OPEN SYSTEMS NETWORKING
TCP/IP AND OSI

David M. Piscitello and A. Lyman Chapin

A
\A4

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontariao Wokingham, England Amsterdam
Bonn Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

OPEN SYSTEMS NETWORKING

Addison-Wesley Professional Computing Series

Brian W. Kernighan, Consulting Editor

Ken Arnold/John Peyton, A C User’s Guide to ANSI C

Tom Cargill, C++ Programming Style

David A. Curry, UNIX® System Security: A Guide for Users and System Administrators
Scott Meyers, Effective C++: 50 Specific Ways to Improve Your Programs and Designs
Robert B. Murray, C++ Strategies and Tactics

Craig Partridge, Gigabit Networking

Radia Perlman, Interconnections: Bridges and Routers

David M. Piscitello/ A. Lyman Chapin, Open Systems Networking: TCP/IP and OSI
Stephen A. Rago, UNIX® System V Network Programming

W. Richard Stevens, Advanced Programming in the UNIX® Environment

W. Richard Stevens, TCP/IP Iilustrated, Volume 1

The publisher offers discounts on this book when ordered in quantity for special
sales. For more information please contact:

Corporate & Professional Publishing Group
Addison-Wesley Publishing Company

One Jacob Way

Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data
Piscitello, David M.

Open systems networking : TCP/IP and OSI / David M. Piscitello and A.
Lyman Chapin.

p.- cm. -- (Addison-Wesley professional computing series)

Includes bibliographical references and index.

ISBN 0-201-56334-7 (alk. paper)

1. OSI (Computer network standard) 2. TCP/IP (Computer network proto-
col) 3. Computer networks. I. Chapin, A. Lyman. II Title. IIL Series.
TK5105.55.P57 1993
004.6'2 - - dc20 93-17791

CIP
Copyright © 1993 by Addison-Wesley Publishing Company

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior consent of
the publisher. Printed in the United States of America. Published simultaneously
in Canada.

Cover photo by Steven Hunt, The Image Bank
Text design by Carol Keller
ISBN 0-201-56334-7

Text printed on recycled and acid-free paper.
12345678910 MU 96959493

First printing, August 1993

CONTENTS

PREFACE

Why This Book, Now?

Demystifying Open Systems

Equal Treatment

Opinions Are Good!

Historical Asides and Authors’ Insights

xiii

Xiii
xvii
Xvii

Xix

Xix

Who Should Read This Book? XX
Contributors xxi
Acknowledgments xxi
PART ONE
INTRODUCTION TO OPEN SYSTEMS 1
CHAPTER 1
INTRODUCTION 3
Organization of This Book 9
CHAPTER 2
OPEN SYSTEMS STANDARDS 13
OSI Standards 13
Internet Standards 21
Parting Comments on Open Systems Standards Processes 26

vi OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

PART TWO

OPEN NETWORK ARCHITECTURES 31
CHAPTER 3
CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 33
Introduction 33
Architectures 34
Open Systems 35
Architecture Wars 37
Layers 37
Terminology 45
Entities 46
Notation 47
Services 47
The Queue Model 50
Connections and Connectionless 51
What about Protocols? 54
Protocol Headers and User Data 57
Relating Service to Protocol 58
Time-Sequence Diagrams 59
A Final Fling with OSI Fundamentals 60
Conclusion 61
CHAPTER 4
THE LANGUAGES OF OPEN SYSTEMS 63
Introduction 63
“Open” Languages—Breaking Language Barriers 64
Data Representation 65
Abstract Syntax Notation 68
ASN.1 Data Types and Tags 69
Modules 72
Transfer Syntax—Basic Encoding Rules (BER) for ASN.1 73
Do I Really Have to Deal with All This? 75
Languages and the TCP/IP Community 76
Conclusion 79

CONTENTS

vii

CHAPTER 5
NAMES AND ADDRESSES 81
Names 82
Addresses 88
Registration Authorities 88
Object Identifiers 96
Conclusion 97

PART THREE

UPPER LAYERS 99
CHAPTER 6
OPEN SYSTEMS APPLICATIONS 101
Distributed Applications Services 106
Conclusion 109
CHAPTER 7
DIRECTORIES 111
The Telephony Model 112
Directory System Principles 113
Open System Directories 114
The Domain Name System 115
The OSI Directory 122
The Directory Model 129
The Relationship Between the OSI Directory and Message Handling Services 135
The OSI Directory in the Internet 137
Other Internet Directory Ultilities 139
Resource Location 141
Conclusion 145
CHAPTER 8
OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 147
OSI Message Handling System (X.400 MHS, MOTIS) 148

viii OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Internet Mail 163
Interworking between MHS and Internet Mail 172
Conclusion 174
CHAPTER 9
NETWORK MANAGEMENT 177
The Internet Approach: Keep It Simple 178
OSI Common Management: Flexibility, At A Price 189
Putting It All Together 205
Where To from Here? 208
Conclusion 211
CHAPTER 10
“CORE” APPLICATION SERVICE ELEMENTS 213
Association-Control Service Element 214
Reliable Transfer Service Element 223
Remote Operations Service Element 232
“Core ASE Wanna-bes” 243
Conclusion 245
CHAPTER 11
THE PRESENTATION AND SESSION LAYERS 247
Presentation Layer 247
Session Layer 261
Putting It All Together 281
The Future of OSI Upper Layers 284
Conclusion 285

PART FOUR

MIDDLE LAYERS 287
CHAPTER 12
THE TRANSPORT LAYER 289

OSI's Connection-oriented Transport Service 290

CONTENTS ix
TCP/IP’s Reliable Stream Service 291
Interfaces to Transport Services 292
Transport Addressing 300
Five Classes of OSI Transport Protocol 301
Conformance 309
Comparing TP4 to TCP 310
OSI Transport Connection Establishment 311
Setting It All to UNIX 317
Frozen References 320
TCP Connection Establishment 320
Normal Data Transfer in OSI Transport Protocol 325
Reliability Mechanisms to Deal with the Real World 328
Data Transfer in TCP—More of the Same 334
Window Considerations for TP4 and TCP 337
OSI's Expedited Data 340
TCP’s Urgent Data 341
Timers and Open Transport Protocols 342
Connection Release (Connection Refusal) in the OSI Transport Protocol 354
Connection Release (Refusal) in TCP 356
Datagram Transport Protocols—CLTP and UDP 358
Conclusion 360
CHAPTER 13
THE NETWORK LAYER 361
Architecture: The Internal Organization of the Network Layer 362
Connection-oriented Network Service 372
Connectionless Network Service 379
Internetworking Protocols 383
NL Protocol Identification in TCP/IP and Multiprotocol Environments 397
Network Layer Addresses 398
Conclusion 411
CHAPTER 14
ROUTING 413
Source Routing and “Hop-by-Hop” Routing 414
Routing Principles 415
Routing Protocols 424

Conclusion

465

X OPEN SYSTEMS NETWORKING: OSI & TCP

CHAPTER 15
DATA LINK AND PHYSICAL LAYERS 467
Taxonomy of Data Link Standards 468
Point-to-Point Connection Standards 469
Multiaccess Channel Standards 471
Metropolitan Area Networks: FDDI and IEEE 802.6 DQDB 473
Fast Packet Services and Technologies 482
Very High Bandwidth as an Enabling Vehicle for OSI 500
Conclusion 500

PART FIVE

THE FUTURE OF OPEN SYSTEMS NETWORKING 503
CHAPTER 16
MULTIPROTOCOL OPEN SYSTEMS 505
The Myth of “OSI Migration” 505
OSI Is an Alternative, Not a Substitute 507
OSI and TCP/IP Coexistence: Networking Détente 510
Bringing OSI into a Network 520
Are the Instrumentation and Expertise Available to Operate OSI Networks? 522
Conclusion 522
CHAPTER 17
AN ARCHITECTURAL ALTERNATIVE FOR THE INTERNET 525
What Is “the Internet”? 525
A Naming-based Concept of Internet Connectivity 527
CHAPTER 18
A READING FROM THE BOOK OF GENEBITS 533
APPENDIX A
NETWORKING ACRONYMS 537

CONTENTS

xi

APPENDIX B
SOURCES

How and Where to Obtain Useful Information
Information about TCP/IP and the Internet
Information about OSI

Authors’ Electronic Mail Addresses

REFERENCES

INDEX

559
559
560

564
566

567

587

PREFACE

Why This Book, Now?

Open systems—in particular, Open Systems Interconnection (OSI) and
TCP /IP'—are all the rage. There are plenty of books that discuss OSI and
plenty more that discuss TCP/IP. However, despite the facts that the
architecture and goals of OSI and TCP/IP are essentially the same, and
that they are really just currently popular manifestations of the same fun-
damental principles and techniques, no previous book has examined the
two in parallel. This book covers both Open Systems Interconnection and
the Internet architecture and protocols, commonly known as TCP/IP.
There are many compelling reasons for examining these architectures in
parallel, which is what this book intends to do.

TCP/IP Has Strongly Influenced the Design of OSI Many of the fea-
tures and functions present in OSI trace their roots back to TCP/IP; for
example, OSI’s transport protocol class 4 and connectionless network
protocol (CLNP) are functionally equivalent to TCP and IP. Furthermore,
OSI's application services—Message Handling System, File Transfer
Access and Management, the Directory, and Virtual Terminal—are all
attempts to improve upon their TCP/IP ancestors; the OSI Message
Handling System, for example, is intended to improve upon the highly
successful electronic-mail facilities provided in the TCP/IP protocol suite
by the Simple Mail Transfer Protocol by permitting facsimile, images, and
voice to accompany text in a mail envelope. The OSI Message Handling

1. Transmission control protocol (TCP) and internet protocol (IP) are the core protocols
of the Internet architecture.

xiii

xiv

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

System also provides a platform for Electronic Data Interchange and Of-
fice Document Interchange, and the OSI Directory will provides a power-
ful, object-oriented, global information base that can be accessed by
humans as well as by distributed applications such as electronic mail and
network file and resource management, building on services hitherto
provided by TCP/IP applications such as FINGER, WHOIS, and the
Domain Name System.

OSI continues to profit from the experience accumulated during
more than two decades of research on and real-world operation of
TCP/IP networks, recorded (since 1969) in an on-line document series
called the Internet requests for comments (RFCs). The RFCs constitute an
archive of networking experiences that are in many cases directly appli-
cable to OSI protocol design and the deployment of OSI-based networks
as well as to the TCP/IP world that has been their traditional focus. This
is particularly true, for example, in the area of transport protocol opera-
tion, in which OSI transport protocol class 4 and TCP share a common
paradigm of “reliability through retransmission.” OSI needs a research
platform the likes of the Internet? not only to test and draw interest to its
application services but to stress the limits of its routing and transport
protocols.

OSI Has Also Influenced TCP/IP TCP/IP’s open shortest path first
routing protocol is derived from OSI’s intradomain intermediate system
to intermediate system routing protocol (which was itself an adaptation
of a link-state routing protocol developed for IP under the auspices of the
Defense Advanced Research Projects Agency). OSI’s data-definition lang-
uage, Abstract Syntax Notation One, is used to define the Simple Net-
work Management Protocol and its management information base. And
OSI's Message Handling System and Directory are so promising that
they are already operated over TCP/IP in large portions of the Internet.

OSI and TCP/IP Are Learning to Cooperate Government open systems
interconnection profiles (GOSIPs) and other computer and communica-
tion system procurement specifications mandate that OSI be introduced
into the networking environments of government (particularly defense)
agencies in Europe and the United States. Mandates such as these, al-

2. The term Internet, with the initial I capitalized, refers to the worldwide interconnec-
tion of a vast number of backbone, regional, and local (enterprise) networks that operate
TCP/IP, OSI, and other protocols. The Internet is a constantly growing entity, and
although it is difficult to determine its exact size, well over 1.5 million hosts are (at the time
of this writing) directly connected to the Internet using TCP/IP. A small, but growing,
number of these hosts also use OSI protocols to connect to the Internet.

PREFACE XV

though highly criticized, have at least had the positive effect of causing
developers on both “sides” to work together. Although the relationship
between TCP/IP and OSI developers has ranged from quietly acrimo-
nious to openly hostile in the past, the cold war is over (although, some
highly vocal pockets of resistance remain), a period of détente is ending,
and a glasnost has begun, as both sides see the benefits of working
together. The number of “tweeners”—networking professionals who
work on standards and development in both the OSI and the TCP/IP
arenas—is growing, not because they think that it is important to cover
all the political bases or because their positive self-image is enhanced by
the broad-mindedness implicit in such an arrangement, but because the
essential technical and organizational problems of networking (particu-
larly internetworking) are the same everywhere and do not divide cleanly
along party lines. The increased cooperation in areas of mutual con-
cern—including interdomain (policy-based) routing protocols, OSI inte-
gration, and perhaps accredited standardization and government profil-
ing of TCP /IP—will play an important role in the future of open systems
networking.

The History of OSI Is Significant—Yet Largely Unknown Having
read several books about OSI prior to undertaking this project, the
authors discovered that without the context of “having been there” to
explain some of the seemingly irrational behavior of the OSI standards
makers—and to translate the often impenetrable “standardese” of OSI—
existing books either leave a false impression of OSI or fail to leave any
impression at all, since they merely coalesce, condense, and regurgitate
the OSI standards without separating what is important from what is not.
The authors believe that one has a much better chance of understanding
how something works if one knows how it got to be that way, if someone
points out the issues that have been overblown, and if the unlikely sce-
narios are distinguished from the scenarios that are probable in real-
world networks. The authors and contributors were present during the
most significant periods of OSI standards development and remain active
as architects of a future, multiprotocol Internet. They are in a much better
position to sort the standards wheat from chaff than those who first
encountered the issues only after the standards were published.

As Is the History of TCP/IP To a large extent, the history of TCP/IP is
the history of OSI. Those who are often perceived by the Internet com-
munity to be the “rational core” of OSI standards developers were, for
the most part, weaned on TCP/IP: to the astonishment of some hard-
core Internetters, they actually knew how to use and implement TCP/IP

Xvi

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

and its applications before they became involved in the development of
OSI, but most important, they respected TCP/IP and appreciated the
advantages of continued cross-fertilization between OSI and TCP/IP
technology.

A Multiprotocol Global Internet Is Coming! Open systems network-
ing is the basis for the evolution of a truly global Internet. The signifi-
cance of open systems networking cannot be understood by focusing
attention on OSI or TCP /IP—or any “open” protocol architecture—in iso-
lation. Only by examining both (eventually, all) of them in context can
the history and likely future of internetworking be understood.

From these observations come the objectives of this book: make OSI
intelligible, relate it to TCP/IP, and in the process, reveal the stories—the
whys and wherefores—behind the standards. These objectives serve as
the major differentiator between this and many other books that appear
to cover some of the same material. Open Systems Networking: TCP/IP and
OSI is not simply a reiteration or regurgitation of the OSI and TCP/IP
standards, nor does it treat open systems networking as an adjunct to a
book whose main purpose is to talk about data communications. Such
reference material already exists and is not sufficient.

Several OSI-related books are specialized. Rather than examine OSI in
a detailed manner from top to bottom (more often, bottom to top), they
focus on a specific area of OSI: upper layers, lower layers, perhaps a par-
ticular OSI application such as the Message Handling System or the
Directory. These are valuable but often can’t serve as (nor do they pretend
to be) a comprehensive primer. Open Systems Networking: TCP/IP and OSI
attempts to present OSI and TCP/IP in a methodical, stepwise progres-
sion, beginning with basic architectural principles, the application of those
principles to specific services and protocols, and the behavior of computer
systems that operate the protocols and form open networks.

Open Systems Networking: TCP/IP and OSI further departs from the
norm by adopting a “top-down,” user-oriented approach. Electronic
mail, for example, is discussed in the following contexts: What does it
do? What does a network have to do to make it happen? How do these
functions appear in OSI and TCP/IP (and why do they appear in that
particular way)? A consequence of applying the “top-down” approach is
that the text makes forward references (typically, toward more detailed
explanations of what has been described at a conceptual level); a benefit
is that readers deal first with aspects of open systems networking at a
conceptual level (what something is) and later with the specific details of
how something actually works.

PREFACE xvii

Demystifying Open Systems

OSI and TCP/IP share concepts, even some culture, but they certainly do
not share terminology! OSI and TCP/IP both suffer from “acrony-
mania”;? OS], in particular, is far and away the most acronymaniacal
technology yet inflicted on the world of networking. This book attempts
to translate OSI (and TCP/IP) architecture and terminology from “ISO-
ese” to “plain-speak.” A major objective of Open Systems Networking:
TCP/IP and OSI is to make it easier for readers to understand and apply
basic networking concepts in the context of open systems. To some
extent, the use of acronyms is unavoidable (as readers may already have
noted). In this book, the use of acronyms is as much as possible aban-
doned in favor of more popular and accessible terminology; for example,
the word packet or frame is preferred to the less intuitive OSI acronym
PDU (which stands for “protocol data unit”).

Equal Treatment

Open Systems Networking: TCP/IP and OSI compares and contrasts the
OSI approach with the TCP/IP approach in what is intended to be an
evenhanded and pragmatic fashion, taking sides on technical issues
when appropriate but avoiding the political-party fervor with which the
comparison is often fraught. For example, if the question “What does
OSI's MHS add to message handling that TCP/IP’s SMTP lacks?” is
interpreted as biased in favor of OS], the balance is eventually restored
when the question “Why has SNMP, not CMIP, been so widely em-
braced by the industry?” is also posed and answered.

In some areas, the book may appear to be almost chaotically neu-
tral, suggesting, for example, that TCP/IP’s Simple Network Manage-
ment Protocol might be used over OSI’s connectionless transport proto-
col to manage OSI network resources or that the OSI Directory be used
over TCP/IP to provide an array of information services. Although this
might be interpreted as heresy (or at least disloyalty) by purists in the
OSI and TCP/IP communities, the authors believe that it serves the user
community much better than orthodoxy, since it demonstrates that open

3. Acronymania \ 'ak-re-,nim-'ma-né-g, -nys\ n. [orig. Piscitello, D. 1991] madness over
acronyms; also rage or eager desire for anything related to acronyms; insane or morbid
craving for words formed from the initial letters of other words; mental disorder character-
ized by high, uncontrolled excitement over the creation of an endless stream of words
formed from the initial letters of other words (Decidedly not Webster’s . . .).

xviii

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

systems networking is about solving communications problems, not cre-
ating or complicating them.

Notwithstanding the goal of equal treatment, readers will find
much more information in this book about OSI than about TCP/IP, for
two reasons. The first is the extent to which the OSI architecture—the
famous seven-layer model—has been adopted, even by its critics, as a
way to talk about open systems networking, even when the subject is not
OSI. The concepts and terminology introduced by the OSI reference
model have in many cases become the standard lingua franca of network
architecture, to such an extent that even a completely evenhanded treat-
ment of OSI and another protocol suite is liable to sound like a treatise on
OSI, with the other suite appearing to be short-shrifted. The authors
know of no way, short of introducing yet a third “neutral” nomenclature,
to avoid this and consequently have not tried to do so.

The second is the sheer volume of information that a truly complete
presentation of the entirety of OSI and TCP/IP would represent, which
could not possibly be contained within a single book such as this. In
those cases in which it is simply not feasible to provide truly equal treat-
ment to both the OSI and the TCP/IP variations of the same theme, the
authors have elected to describe the OSI side in detail and to compare
and contrast the corresponding TCP/IP component with the more
detailed OSI description. This choice recognizes that a number of high-
quality books describing TCP/IP are already widely available,* and that
the technical specifications of the components of TCP/IP are not only
available electronically on the Internet (at no cost beyond the network-
access cost of retrieving them from one of the Internet document ar-
chives), but they are much easier to read and understand than their OSI
counterparts. To successfully plow through the piles of OSI specifications
(which must be purchased, at significant cost, from national standards
organizations such as the American National Standards Institute without
losing one’s way simply requires more experienced guidance . . . and
money! The authors can, at least, provide the former.

4. Readers are encouraged to refer especially to Comer (1991), Stevens (1990), and
Perlman (1992a).

PREFACE xix

Opinions Are Good!

The “value-neutral” approach adopted in many recent textbook-style
treatments of OSI presents readers with the equivalent of an undifferen-
tiated memory dump; by failing to distinguish between what is impor-
tant and what isn’t, these books serve the objective purpose of presenting
the facts about OSI but make it very difficult for readers to understand it.
A description of how each of the five OSI transport protocol classes
works is a fine thing, but without knowing why there are five classes
(why not just one? if more than one, why five?), and without being told
that only two of the classes are ever used in practice, readers are not likely
to come away with a very useful understanding of OSI transport ser-
vices. The authors of Open Systems Networking: TCP/IP and OSI are in a
position to make informed value judgments and to present the informa-
tion in a format that leads to understanding rather than suffocation: like
having an intelligent debugger, if you will, rather than a core dump.

Historical Asides and Authors’ Insights

The historical and anecdotal observations made throughout the text are
based on direct participation by the authors in the OSI and TCP/IP stan-
dards processes for the past 15 years, including participation in the
Internet Engineering Task Force (IETF), the Internet Engineering
Steering Group (IESG), and the Internet Architecture Board (IAB), as
well as in many of the national and international standards committees.
Many of the historical observations (“asides”) concentrate on the stan-
dards process or the results of that process; by convention, they are itali-
cized and proceeded in the text by the symbol .

Readers familiar with The Open Book, by Dr. Marshall T. Rose,
should not confuse these historical asides with the “soapboxes” used in
Marshall’s book. The Open Book is enlivened considerably by the use of
soapboxes on which Marshall perches deliberately provocative, “not
strictly objective” commentary on the material contained in the main
text. Much of this commentary expresses Marshall’s righteous indigna-
tion at the follies and pedantry of OSI and the OSI standardization
process, claiming that since he wasn’t there, he doesn’t understand what
really happened, but just look at the result! The net effect, of course, is to
create and promote a pervasive negative impression about everything
that carries the “OSI” label. (Some people, of course, believe that Mar-

XX

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

shall’s negative impression of OSI is richly deserved . . .)

The purpose of the historical asides in Open Systems Networking:
TCP/IP and OSI is not to use “pen up” observations to take sides in a con-
test between OSI and TCP/IP. The historical asides and authors’ insights
in this book do not rush to defend the OSI standards or the OSI stan-
dards-making process; in fact, they are often indictments of bad decisions
that led to bad standards, since they reveal how the decisions were made,
exposing the inherent flaws in applying a committee consensus process
to the development of technology. (In some cases, of course, the authors
themselves are wholly or partly to blame, since they were there and might
have known better; those asides can be read as rueful self-criticism.) The
asides and insights are also used to sort the good in OSI from the bad;
often, criticism is accompanied by a recommended action—such as
“Ignore this part of standard X,” or “Implement only these functions of
standard Y”—or a forecast of what will really matter in the future. It is
worth noting that the asides and insights are not confined to OSI; the
shortcomings and missteps of the “working code and rough consensus”
process applied in the Internet community bring TCP/IP under fire as
well. The authors have jostled the memories of several of the original
DARPA researchers to add an historical perspective of TCP/IP as well.

Who Should Read This Book?

For networking neophytes, this book may serve as both a primer and a
road map; it answers questions such as “How does it work?,” “What is
relevant and what is not?,” and perhaps most important, “Why did they
choose to do it this way?” For experienced networking professionals,
especially those familiar with TCP/IP, this book demystifies OSI and in
the process illustrates both its strengths and its weaknesses. For those
involved in network planning and administration, especially in environ-
ments in which TCP/IP and OSI coexistence, transition, and migration
are the buzzwords du jour, this book provides a basis for understanding
not only how OSI and TCP/IP work but how they might peacefully and
productively coexist in complex, multiprotocol internets, today and
tomorrow.

Open Systems Networking: TCP/IP and OSI does not give an exhaus-
tive explanation of the details of every protocol or service. The goal of
this book is not to serve as the definitive “reader’s companion” for every
open systems networking standard but to present and answer the “why”
and “how” questions of building open networks. The book therefore

PREFACE xxi

includes only as much protocol detail as is necessary to facilitate under-
standing; no one should expect to use it as a protocol implementation
manual. However, the book should enable the system designer to under-
stand the way in which OSI and TCP/IP systems work and the way in
which a specific set of concepts and terminology is used to define the
protocols. It should also assist anyone who has a fundamental under-
standing of data communications and networking to understand and
apply the principles and protocols of OSI and TCP/IP to satisfy real-
world computer-networking requirements.

Contributors

The authors are indebted to Lisa Phifer, Deirdre Kostick, Paul Francis
(née Tsuchiya), and Yakov Rekhter, who made substantial contributions
to the chapters on network management and routing. Lisa also con-
tributed to both the text and the historical insights provided in the chap-
ters on the OSI upper layers and the application service elements. It is no
exaggeration to say that her timely and diligent review greatly improved
the quality of this book.

Acknowledgments

No project of this magnitude can succeed without the assistance of
friends and family. Radia Perlman deserves credit for insisting that we
write this book and then alternately encouraging and chiding us until
we had. Among our friends in the Internet community, we wish to
thank Stephen Crocker, Jon Postel, and Vinton Cerf for their technical
assistance and the contribution of anecdotal information on TCP/IP.
Among the “tweeners,” our thanks go to Ross Callon, John Burruss,
Christine Hemrick, Kaj Tesink, Nancy Hall, Rob Hagens, Steve Kille,
Susan Hares, Mark Knopper, Hans-Werner Braun, Erik Huizer, and
David Katz. We also wish to acknowledge our colleagues (past and pres-
ent)—Jeff Rosenberg, Jim Hopkins, Gary Summers, Scott Stein, Tracy
Cox, Larry Lang, Phil Karn, Ted Brunner, Kathy So, James Davin, Dave
Oran, Chuck Wade, John Day, Bud Emmons, and Al Grimstad—who
throughout our careers offered daily challenges and valuable insights,
and enthusiastically supported our efforts. John Burruss, Radia Perlman,
and Phil Almquist in particular deserve mention for having provided

xxii

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

excellent technical reviews of the original manuscript.

We would certainly be remiss if we did not mention both the OSI
and Internet communities as well; for more than 15 years, they have pro-
vided an immensely fertile testing ground for the formulation of network-
ing ideas, and although the road has been somewhat rocky, we feel privi-
leged to be a part of the process of developing networking technology.

Our wives and children demonstrated enormous patience and un-
derstanding, and offered support and encouragement that was simply
remarkable. It will be difficult to repay the lost weekends and evenings,
but a public acknowledgment of how much we love and appreciate them
seems like a good start.

Finally, we’d like to thank Mark Taranto, who pounded the Byz-
antine principles of real analysis and metric space into Dave’s head; he
may not have contributed specifically to this project, but it's a good bet
that Dave wouldn’t be writing a book with Lyman without having com-
pleted his undergraduate degree in mathematics.

PART ONE

s INTRODUCTION TO OPEN SYSTEMS

INTRODUCTION

Books that discuss computer communications invariably begin by draw-
ing analogies between computer networking and earlier, landmark
inventions that have had a profound impact upon, perhaps even “revo-
lutionized,” society. Andrew S. Tanenbaum compares the impact of com-
puter networks to the mechanical systems accompanying the Industrial
Revolution, while Douglas E. Comer likens digital communications net-
works to the great railroads of the nineteenth century. But neither the
Industrial Revolution nor the railroad has made as great an impact on
human civilization as “the marriage of the engineering of telecommuni-
cations to that of the computer industry” (Martin 1976, 2). Why? No pre-
vious technology has advanced quite so rapidly and with such unbounded
horizons as the computer, and no previous technology has achieved any-
thing close to the ubiquity of the modern telecommunications system.
James Martin accurately predicted that through this union, the
telecommunications system would aid distributed processing, and the
computer would facilitate telephony switching. The actual chronology of
events in fact exceeded Martin’s expectations, for shortly after his specu-
lation in the mid-1970s, information processing was delivered to the
desktop. A decade marked by increased computer speed, memory, and
storage, accompanied by a proliferation of useful and distributed appli-
cations, has fundamentally changed the way in which much of society
works and interacts: we now send mail, do our banking, and exchange
documents electronically, from our business places and our homes. This
change in human behavior has affected the telecommunications system
more profoundly than Martin forecast when he suggested that comput-
ers would merely facilitate switching. It adds a level of sophistication to

3

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

the equipment attached to the telephone network that could never have
been achieved by a telephone handset with a 12-digit keypad. In addition
to placing a voice call to conduct business, we increasingly seek to
exchange images—files of immense size—and to animate them in the
process, and we expect do so in milliseconds. In many respects, informa-
tion has become as important a commodity to switch as voice. The tradi-
tional voice and data networks will undergo profound changes in the
next decade, as both seek to integrate the services of the other.

Therein lies a problem with the marriage. As in the Houses of
Montague and Capulet, the parents of voice and data don’t get along.
Rarely have computer and communications providers shared a common
set of beliefs and purposes. In the House of Telephony, data switching has
historically been viewed as a second-tier service, incapable of ever achiev-
ing the “cash-cow” status of voice, and therefore much less important to
the “bottom line.” In the House of Data, telephony providers have been
criticized as being intolerably slow to respond to the increasing demand
for bandwidth, willing only to focus on “dataphony,”! and the data ser-
vices offered by “common carriers” have historically been much less pow-
erful and flexible than on-premises, local area networking alternatives.

Never have these differences of culture and philosophy been more
obvious than during the development of Open Systems Interconnection,
during which the debates between the Houses of Voice and Data were
often more religious and political than technical.? This is perhaps be-
cause, by the mid-1970s, the networking of computers had begun to look
like a lucrative new market opportunity rather than an amusing academ-
ic toy. The notion of open systems networking became interesting to both
the voice and the data worlds at nearly the same time, for profit’'s sake
and no other; and both the House of Data and the House of Voice wanted
to secure as big a slice of the new pie as possible.

But what exactly is “open systems networking”? There are, of
course, many ways to answer this question. The answer certainly does
not lie strictly within the reference model for Open Systems Interconnec-
tion (ISO 7498, 1984), because architectures and protocols other than OSI

1. Dataphony is a term coined by Christine Hemrick, presently with Cisco Systems, to
distinguish low-bandwidth, terminal-to-mainframe networking applications from high-
bandwidth, distributed-processing applications—i.e., real data networking.

2. OSI wasn’t the first pretext for these debates. The initial experience of the conflict for
one of the authors can be traced back to the first time a Bell Telephone employee marked
the area surrounding a data access arrangement in a computer laboratory at a Burroughs
development facility with red tape, plopped down a Bell modem and telephone, and said
“Don’t touch!” Shortly thereafter, it was necessary to move the entire wall without disturb-
ing the tape.

INTRODUCTION 5

are widely acknowledged as bases for open systems networking. The
publication of the OSI reference model is noteworthy primarily because
it represents an internationally recognized effort at codifying what con-
stitutes “openness.” What is recorded in the OSI reference model as the
definition of an open system is in fact far less significant than the events
that motivated—in the minds of some, provoked—an international inter-
est in open systems networking.

Even at this late stage in the evolution of open systems networking,
any attempt at defining open systems is highly subjective. For the purposes
of this book, however, open systems networking implies or suggests the
following: multivendor, interoperable hardware and software systems,
based on internationally recognized and publicly available documenta-
tion (“standards”), which can be acquired “off the shelf” (as a standard
rather than special-order product).

Why is everyone so excited about open systems? Some are excited
because the concept represents “safe networking”: protection from pro-
prietary networking solutions that lock users into dependence on the
products and services of a single vendor (and thereby place users at the
mercy of that vendor, in both an economic and a product- or feature-
availability sense). Especially among government agencies that have
spent millions of dollars (or the equivalent) on custom networking equip-
ment, it is widely perceived that the enhanced interoperability brought
about by openness and standards leads to a (desirable) highly competi-
tive market, which will greatly reduce the cost of networking. Others
have an altogether different concern: single-vendor solutions are not
inherently evil, but information technology and distributed processing
today span so many markets that no single vendor provides hardware
and software solutions for every conceivable information technology
application, and by necessity, companies with diverse needs must pur-
chase information technology products from many vendors. Finally,
some believe that open systems networking is the only way to achieve
the service ubiquity of telephony for data.

Open systems networking and its associated standardization pro-
cesses are an enormous undertaking that encompasses far more than
establishing guidelines for data communications and information tech-
nology. Open systems standards have widely varying political and eco-
nomic ramifications for users, equipment manufacturers, and network
providers. For the network consumer, two very desirable effects of open
systems standardization are to enhance interoperability and to foster a
highly competitive market. For the vendor of a product line that intercon-
nects via a proprietary networking technology, however, open systems

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

standardization represents yet another opportunity for competitors to pry
customers away from the hard-won market share that it has nurtured on
that proprietary networking solution; the competitors, of course, view this
as a major benefit. Finally, for the communications carriers in certain
countries, standards are quite literally enforceable laws that govern the way
in which public network resources may be used; standards offer them the
means to extend their control over voice and postal services to data.

Today’s open systems have different origins as well. OSI was, from
the beginning, intended to be the open systems networking solution.
TCP/IP? was not originally designed for such a lofty purpose; on the
contrary, it began as a private networking experiment conducted within
the U.S. computer science research community and supported by the
Department of Defense Advanced Research Projects Agency (ARPA),
with a potential for military applications. The ARPANET may have been
the first operational packet-switching network, but few of those who
designed and installed the original four-node network* in the fall of 1969
anticipated that in just over two decades, from such a humble beginning,
a global Internet of over 1.5 million computers and an estimated 5 million
users would evolve. And yet practically everything we know about pack-
et switching, and a good deal of what we know about distributed pro-
cessing, has been affected by the research and experimentation associat-
ed with the Internet. (A complete description of the history of TCP/IP is
inappropriate here; for our purposes, it is sufficient to identify the land-
mark achievements in the history of TCP/IP [see Table 1.1].)

TCP/IP evolved into an open systems networking alternative largely
due to the inability of the OSI standards developers to deliver the pro-
mised goods in a timely fashion, for the standards kept coming, and
more were promised, but interoperable OSI implementations were hard
to find. By 1984, so much hype had preceded the delivery of actual OSI-

3. The term TCP/IP is commonly used to refer either specifically to the transmission
control protocol (TCP) and internet protocol (IP) or generally to the entire suite of protocols
that have been developed by the Internet community to operate in conjunction with TCP
and IP in the capital-I Internet (the global interconnection of networks running the TCP/IP
protocols) and in individual enterprise-specific “internets.”

4. The four original sites were the University of California at Los Angeles (UCLA), the
Stanford Research Institute (SRI), the University of California at Santa Barbara (UCSB), and
the University of Utah. According to Stephen Crocker, one of the graduate students who
connected the first host—a SIGMA VII—to the first ARPANET interface message processor
(IMP) at UCLA, “An RFP was released in the summer of ‘68, and Bolt Beranek and
Newman (BBN) won. The contract called for delivery of a four node network in fall ‘69
with 50 (not 56) kilobit trunks. IMP 1 was delivered to UCLA prior to its scheduled deliv-
ery date of 9/1/69. SRI, UCSB, and Utah followed at monthly intervals” (Stephen D.
Crocker, personal correspondence, December 1991).

INTRODUCTION 7

TABLE 1.1 Landmarks in the History of TCP/IP

1969 RFC 1" Network-control program (NCP) development
First Internet RFC (“Host Software”)
IMP 1 delivered to UCLA

1971 RFC 114 First FTP, Telnet
1972 RFC 318 Telnet
1973 RFEC 475 FTPt and (first) network mail system

TCP development begins at DARPA

1974 RFC 675 First TCP implementations: SRI, BBN, UCLA
1979 Ethernet is born
1981 RFCs 786, 788 First mail-transfer protocol, first SMTP

RFCs 791, 793 TCP and IP become Internet standards
1982 REC 821 SMTP Internet standard (9/80: REC 772)
1983 RFCs 882, 883 Domain Names

MIL-STD-1777 U.S. DOD miilitary standard for TCP

RFC 854 Telnet Internet standard (6/80: RFC 764)
1985 RFC 959 FTP Internet standard (7/72: RFC 354)
1990 RFC 1157 SNMP Internet standard (8/88: REC 1067)

* The network control program was completed and working prior to the introduction of the
request for comments (RFC) document series. According to Jon Postel, who has been the
editor of the RFC series since its inception, it was agreed at that time that the RFC series
would include only “working documents” and that the ARPANET Network Information
Center (NIC) would begin a standards series with NCP; somewhere along the line, NCP
disappeared from the documentation. It is rumored that copies still exist in Stephen
Crocker’s documentation archives.

t According to Jon Postel, the origins of what we know as Internet mail are found in the
“mail” command in this FTP specification.

compliant equipment, and so few interoperable products existed, that
industry observers began to speak of it as a paper tiger. Proprietary net-
working solutions continued to dominate the market, and although man-

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

ufacturers’ marketing representatives talked a great deal about “con-
forming to the OSI reference model,” their development groups man-
aged to deliver only token products. The need for genuine open systems
remained unfilled and was growing. Gradually, TCP/IP ate OSI's mid-
eighties lunch, abetted in no small part by Dan Lynch’s highly successful
TCP/IP Implementers” Workshops, which evolved into the even more
successful Interoperability Conferences and Exhibitions, sponsored by
Interop, Inc. The first Implementers’” Workshop was held in Monterey,
California, in August 1986; the first Interop conference was held in Mon-
terey, in March 1987, and by 1992, the attendance at the now semiannual
Interop exceeded 50,000. Interop allowed TCP/IP vendors to demon-
strate real products operating in a multivendor environment on real net-
works, while the OSI community endlessly debated the arcane merits of
formal description techniques, conformance statements, and protocol
implementation conformance statements.

Interop was just one of many enabling vehicles for the success of
TCP/IP; the foremost was and remains the Internet infrastructure—the
actual Internet, consisting of real networks and real systems—which facil-
itates experimentation and research on a global scale.> A grass-roots level
of cooperation permeates the Internet, linking academics, network pro-
viders, and even the fiercest of competitors in the manufacturing sector:
egos and company biases are frequently set aside to bring useful new
technology into the Internet. This is the essence of what makes TCP/IP
successful today.

Still, OSI keeps coming. The promise is quietly, but inexorably,
becoming a reality. All of the critical-path protocol standards have been
completed, and OSI X.400 message handling and X.500 directory applica-
tions are today operated over both pure-OSI stacks and hybrid stacks in
enterprise networks and across the Internet. Real OSI products are now
demonstrated alongside TCP/IP products at Interop as the industry
attempts to shape the multiprotocol morass of today into the multiproto-
col Internet of tomorrow.

Why has OSI failed to meet expectations? Unfortunately, OSI had to
be all things to all people. It had to accommodate the needs of the teletex
and videotex services; integrated services digital network (ISDN); and
the government agencies and postal, telephone, and telegraph (PTT)

5. According to Larry Landweber, who keeps track of Internet connectivity throughout
the world, 109 countries (as of summer 1992) have some sort of connectivity to the Internet
through IP, BITNET, UUCP, OSI, or FIDONET links; of these, 46 countries have direct IP
connectivity (Landweber 1992).

INTRODUCTION 9

agencies of 20 or 30 countries. Practically every innovation that came
along in the early stages of OSI development had to be included, and this
generous policy of inclusion played to the detriment of OSI, compli-
cating it in some cases beyond reason, creating uncertainties among pro-
duct planners, and most important, sapping valuable expertise that
should have been devoted to implementing and testing it.

Despite these handicaps, OSI has managed to bring a variety of
valuable new services to data networking: “white pages” directory ser-
vices, a powerful network-programming language, multimedia messag-
ing, and routing and addressing mechanisms that permit internets (and
potentially, the Internet) to be scaled up to very large size. These may
soon be appreciated as landmark achievements (see Table 1.2).

Open systems networking today is about OSI and TCP/IP, and per-
haps other protocol stacks as well. Migration, evolution, and transition
from TCP/IP to OSI—marching orders from the 1980s—are regarded
now as irrelevant strategies; the operative words for the 1990s (and be-
yond) are coexistence and integration. The Internet is experimenting with
OSI directory and message handling applications because they add value.
Gateways are now provided between OSI and TCP/IP mail applications
because they serve the community. OSI transport services provided by
TCP and IP support OSI applications where OSI transport protocols have
yet to be deployed, and transport service bridges are used where neces-
sary because it is a practical thing to do. Backbone and regional networks
switch OSI and TCP/IP datagrams, host implementations are becoming
“dual-stack,” and SNMP is run over OSI because it all works. In the
Internet, conformance takes a back seat to interoperability, and OSI will
be far more useful as part of the Internet than it has ever been on its own.

In Open Systems Networking: TCP/IP and OSI, the authors hope to
provide an understanding of how the components of TCP/IP and OSI
work, how they are similar and how they differ, how they came to be
what they are today, and how they might play together in the future.
There is much cause for optimism and enthusiasm, and the authors hope
to impart some of this to the readers.

Organization of This Book

The remainder of Part One, “Introduction to Open Systems,” describes
the OSI and TCP/IP standards processes (and their key participants),
and establishes the convention of examining OSI and TCP/IP in a fea-

10

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TABLE1.2 Landmarks in the History of OSI

1977 published articles on OSI RM

1978 First OSI standards meeting (TC 97/SC 16)
CCITT X.200 First CCITT OSI RM (Grey Book)

1980 CCITT T series Teletex (telematic services)

1983 First NIST OSI workshop

1984 ISO 7498 OSI reference model
X.400 series Message handling (MHS)

1987 ISO 8326/8327 Session service and protocol

1988 ISO 8571 File transfer (FTAM)
X.500 series The directory (ISO 9594)
ISO 8822/8823 | Presentation service and protocol
ISO 8072/8073 | Transport service and protocol
ISO 8473/9542 | Internetwork protocol and routing
FIPS 146 First release of U.S. GOSIP (8/88)

1990 ISO 9595/9596 | Management service and protocol

Note: The dates shown in the left-hand column are the years in which the ISO Central
Secretariat formally published the corresponding OSI standards. In many cases, the final
version of a standard was widely available many years earlier (as an approved draft inter-
national standard; see Chapter 2).

ture-by-feature, side-by-side manner.

Part Two, “Open Network Architectures,” examines the architectural
models for TCP/IP and OSI. OSI promulgates a formal (and formidable)
reference model; a single, readily identifiable “reference model” description
of the TCP/IP architecture does not exist, so the authors compare the col-
lection of TCP/IP architectural “folklore” to the more formal specification
of the OSI reference model. Key concepts such as layering, services, and
protocols are introduced, and the descriptive techniques used in OSI stan-
dards—the service model, state machines, and time-sequence diagrams—
are covered here as well. OSI’s data-definition and network-programming
language, Abstract Syntax Notation One, is described here, as are names
and addresses and the roles they play in open systems networking.

INTRODUCTION 11

An architectural characteristic of open systems networks (as op-
posed to proprietary networks) is the assumption of a set of generic, or
generally available, applications that become building blocks (tools) for
creating more complex distributed systems. In OSI, these are called appli-
cation service elements; in TCP /IP, simply “applications.” OSI and TCP/IP
differ somewhat in the way in which applications are constructed. The
differences between OSI and TCP/IP application “service” architectures
are described in Part Three, “Upper Layers.” Three “daily-use” applica-
tion services that are common to TCP/IP and OSI—electronic mail, direc-
tories /information services, and network management—are presented
here. An overview of the basic requirements of applications—synchro-
nization, token control, connection management, activity management,
remote operations, and reliable transfer—are introduced at a conceptual
level here as well, so that readers have a general understanding of these
capabilities to which they can refer when the specific mechanisms in the
layers that provide these capabilities (presentation and session) are dis-
cussed later in the book.

Part Four, “Middle Layers,” examines how end-to-end data trans-
port, internetworking, and routing are performed in OSI and TCP/IP.
The similarities and differences that exist between OSI and TCP/IP
transport services, for example, are presented at a “bit level” of detail.
The roots and history of the “connections versus datagrams” debate
(which persists even today within the OSI community) are exposed here
as well. Rather than include an exhaustive recapitulation of readily avail-
able information about existing point-to-point link and LAN technolo-
gies at the data-link layer, Open Systems Networking: TCP/IP and OSI
focuses on emerging digital technologies that have been touted as broad-
band® platforms for advanced distributed applications: frame relay,
FDDI, SMDS, and broadband ISDN.

Part Five, “The Future of Open Systems Networking,” attempts a
Hegelian synthesis of TCP/IP (thesis) and OSI (antithesis) by reviewing
the guidelines for, and politics of, building a multiprotocol Internet. This
part describes the status of the Internet activities that are directed at
expanding the internetworking platform of the Internet to sustain its
remarkable growth and examines issues related to evolving the Internet
from its current TCP/IP core to a system that supports internetworking
based on OSI, XNS/IPX, and AppleTalk® as well.

6. With apologies to electrical engineers—in particular, those who are familiar with the
notion of broadband as it is applied in the world of local area networks—the term broad-
band is used here in the telephony sense of the word; i.e., transmission rates in excess of 1
megabit per second.

OPEN SYSTEMS STANDARDS

Both OSI and TCP/IP are guided by standards. The communities who
develop standards for OSI and TCP/IP share some common practices.
For example, both advance technology through a committee and consen-
sus process using some form of parliamentary procedure. Both have a
hierarchical infrastructure to coordinate work and enforce written (and
unwritten) rules of conduct. Participation in both is international.

In other respects, these communities differ substantially, especially
with respect to image and culture. To fully appreciate the differences,
one must first understand the composition, scope, purpose, and practices
of each community.

OSI Standards

In the late 1970s and early 1980s, the first OSI standards were developed
under Technical Committee 97 (TC 97), Information Processing, of the
International Organization for Standardization (ISO).

A TH A Why the acronym for International Organization for Stan-
dardization should be 1SO, rather than 10S, is a mystery

even to standards-committee insiders. The French version of the organization’s
name is Organisation Internationale de Normalisation, so the most common
explanation for a mismatch between the name of an international standards
organization and its acronym doesn’t apply in this case. The best explanation
the authors have heard is an analogy to the Go Children Slow traffic-sign con-

13

14

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

vention: the most important word takes the place of honor (and in the case of
traffic signs, of motorists’ attention) in the middle.

As is the case with all ISO standards committees, the membership
of TC 97 was composed of the national standards bodies of those coun-
tries that decided to participate: ANSI (the American National Standards
Institute), for example, represented the United States; BSI (the British
Standards Institute) represented the United Kingdom; AFNOR (the
Association Francaise du Normalisation) represented France; and DIN
(the Deutsches Institut fiir Normung) represented Germany. Within TC
97, which represented primarily the interests of computer manufacturers
and users, Subcommittee 16 (TC 97/SC 16) was created for the express
purpose of working on the new area of open systems interconnection.

Within Subcommittee 16, the OSI reference model and general
architecture issues were studied in Working Group 1 (TC 97/SC 16/ WG
1), and “layer-specific” activities were directed to the following WGs:
transport and session to WG 6, application and presentation to WG 5,
and sometime later, management of OSI systems to WG 4. Although
most of OSI was brand new (and could therefore be assigned at will to
the brand-new Subcommittee 16), its scope also encompassed aspects of
telecommunications and data transmission for which standards work
was already well under way. Responsibility for developing OSI-related
standards for the network, data link, and physical layers were handed
over to the existing Subcommittee 6 (Data Communications): physical
interfaces to WG 3, data link layer to WG 1, and network layer to WG 2.
This original committee structure for the development of OSI standards
is illustrated in Table 2.1.

At the time, ISO TC 97/SC 6 and Study Group VII (SG VII) of the
International Telegraph and Telephone Consultative Committee
(CCITT)! worked closely on the development of public packet-switching
standards (such as X.25, which is by far the best known). CCITT is a
United Nations treaty organization and is composed primarily of tele-
communication providers.2 CCITT SG VII had begun work on a message
handling service (which would eventually become the X.400-series rec-

1. In this case, the acronym makes sense even though it does not correspond to the
English-language representation of the name: CCITT expands to the French Comité Consul-
tatif International Télégraphique et Téléphonique. The name of this group changed to Inter-
national Telecommunications Union-Telecommunications Standardization Sector in March 1993,
whereupon CCITT was officially superseded by the acronym ITU-TS; throughout this
book, however, we use the more familiar CCITT nomenclature.

2. Although there is nothing in the charter of either organization that says so, ISO has
historically focused on the priorities of computer equipment manufacturers and users (the

OPEN SYSTEMS STANDARDS 15

TABLE 2.1 Original ISO OSI Standards Committees

Subcommittee Working Group Responsibility
16 1 OSI architecture
16 4 Management
16 5 Application,presentation
16 6 Session, transport
6 2 Network
6 1 Data link
6 3 Physical

ommendations), and ISO and CCITT agreed to coordinate their efforts to
develop a single international reference model for Open Systems Inter-
connection.

Following an initial “feeling-out” period, these two standards bod-
ies concluded that, as a parallel effort to the ISO standards for OSI, the
CCITT would produce a corresponding series (the X.200 series) of CCITT
recommendations. By 1984, the “joint” standards shown in Table 2.2
would be in place.

Over the years, an inordinate amount of time and energy would be
devoted to ensuring that the contents, even the wording, of the two sets
of what can be called “core OSI standards” would be identical. (It should
be noted that the core set of standards expanded nearly exponentially
from this modest beginning. The “References” list provides a cross refer-
ence of all ISO and OSI standards to their CCITT counterparts.)

Since 1984, the players, the process, and the number of OSI-related
standards have grown, and the committee infrastructure itself has changed.
ISO now carries out information technology standardization, including all
of the work labeled “OSI,” jointly with the International Electrotechnical

“host people”), whereas CCITT has focused on the priorities of the “common carrier” orga-
nizations (which, in many countries, are government-owned and -operated postal, tele-
phone, and telegraph agencies) such as, in the United States, AT&T, Sprint, MCI, and the
regional telephone operating companies. These two perspectives on how data networking
should be organized are vastly different, as will be seen in later chapters.

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TABLE 2.2 Cross-Reference of Initial ISO/CCITT OSI Standards

OSI Standard ISO Standard Number ~ CCITT Recommendation
Reference model ISO 7498 X.200
Service conventions ISO TR 8509 X.210
Network service definition ISO 8348 X.213
Transport service definition ~ ISO 8072 X.214
Session service definition ISO 8326 X.215
Transport protocol ISO 8073 X.224
Session protocol ISO 8327 X.225

Note: The standards depicted here are those contained in the 1984 CCITT Red Book,
Volume VIII, Fascicle VIIL.5. Many other standards that are OSI related were jointly devel-
oped; notably, X.25/ISO 8208 at the network layer, as well as data link and physical layer
standards too numerous to mention here.

Commission (IEC) in Joint Technical Committee 1 (ISO/IEC JTC 1), which
has replaced TC 97. ISO/IEC still cooperates with CCITT. The TC 97
Subcommittee 16 has been replaced by Subcommittee 21 (Information
Retrieval, Transfer, and Management for Open Systems Interconnection),
and Subcommittee 6 has been renamed Telecommunications and Informa-
tion Exchange between Systems. Typically, the participants in CCITT (offi-
cially, the governments of countries that are signatories to the United
Nations treaty that established the International Telecommunications
Union ITU) and ISO/IEC “national bodies” have their own national com-
mittees, which submit national positions and contributions to the interna-
tional standardization process represented by CCITT and ISO/IEC. In the
United States, ANSI delegates the responsibility for actually producing
standards to accredited standards committees (ASCs): Accredited Stan-
dards Committee X3 (Information Technology), for example, has responsi-
bilities within the United States that are roughly equivalent to those of Joint
Technical Committee 1, and within X3, X3T5 (OSI) and X353 (Data Com-
munications) feed into SC 21 and SC 6, respectively. The Electronic
Industries Association (EIA), Accredited Standards Committee T1 (Tele-
communications), and the Institute of Electrical and Electronics Engineers
(IEEE) also contribute to OSI standardization.

OPEN SYSTEMS STANDARDS 17

The OSI
Standards
Process

ISO OSI standards are initially introduced or created in committee as
working documents that contribute to an existing work item. (In some cases,
working drafts instigate new work items.) After some number of cycles
of review, discussion, debate, and revision, working drafts are advanced
through a committee vote to the status of committee draft (CD).> Commit-
tee drafts typically have a 60-day ballot period that offers national bodies
the opportunity to review the material within their respective national
committees. If a CD ballot fails, the document is revised according to
comments submitted by members. (Loosely stated, the rules are as fol-
lows: a national body can’t say “no” without providing comments that, if
accepted, would enable that national body to change its ballot to a “yes”;
i.e,, in a CD ballot response, a national body can’t really say, “This is a
bad idea” [it happens, but with no effect]; if a national body really hates
an idea, it should vote “no” on the original new work item ballot.) When
a CD ballot is approved—i.e., a document is considered mature and sta-
ble—the CD is balloted as a draft international standard (DIS). Usually,
although not always, a DIS represents a “substantially complete and ac-
curate” specification, and folks are encouraged to implement it. A DIS bal-
lot lasts six months, and in an ideal world, practical implementation expe-
rience could be obtained, although this has not historically been the case.

AH A There is a cautionary statement on a draft international
standard that indicates that it may change. This has the unfor-
tunate but practical effect among many organizations of inhibiting serious de-
velopment until the document has become an international standard —unfortu-
nate because it is at this very stage that the most serious implementation and
testing should take place, so that what eventually becomes an International
Standard is, in fact, implementable and highly likely to be useful.

If a DIS ballot succeeds, the editor of the specification is assigned
the responsibility of cleaning up the document and forwarding it to the
ISO Central Secretariat in Geneva for processing as an international stan-
dard. The process is illustrated in Figure 2.1.

Of course, if one asked a hard-core Internetter, the perception of the
process might be described more cynically, as is suggested in Figure 2.2.

CCITT operates somewhat differently. During a four-year study
period, CCITT addresses new work items and performs revisions to rec-
ommendations made during the previous study period. At the end of the

3. This step in the ISO standards process was, until a few years ago, called the “draft
proposal” (DP) stage.

18

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

“No” votes to resolv

AL Submit a * Argue, Ballot
“L 1, —» working —>.—> revise |—m asaa%D -
Ty draft draft —

Submit to 1SC
Central
Secretariat a
an IS

Stabilize text
and establish [g
technical integrit

Ballot
as a
DIS

“No” votes to resolvi

FIGURE 2.1 ISO OSI Standards Process

study period, a plenary assembly is held, during which CCITT considers
(in the terminology that is common to all CCITT recommendations) spec-
ifications and, after careful consideration, grandly and unanimously
declares its view that a specification benefits humanity (at least, that part
of humanity that is involved in telecommunications) and directs editors
to submit approved recommendations for publication in a series of
books, fascicles, and volumes. Before the close of the plenary assembly,

“No” votes to resolv

Take somethin ST ¢ Twiddle
that worked ubmi the bits —
in the Internet asa ->.—> forno | g Ballot
for 10 years WD obvious asaCD |
and ossify it . . reason

Be patient; ISC Submit to ISC
will eventually Ballot Central
realize it's the asa Secretariata

right thing to d¢ DIS an IS

“No” votes to resolv

FIGURE 2.2 Internetters’ View of ISO Standards Process

OPEN SYSTEMS STANDARDS 19

Beyond Base
Standards:
Profiles,
Implementers’
Agreements, and
Conformance
Testing

CCITT selects a pretty color for the entire series of books: thus far, pri-
mary (yellow in 1980, red in 1984, blue in 1988) and secondary (orange in
1976) colors have been selected. The 1992 recommendations will be pub-
lished (sometime in 1993) in the White Books.

OSI standards offer choices in places where choices aren’t always best for
guaranteeing the interoperability of different implementations—which is
presumably the purpose of having open systems in the first place.
Shortly after it became evident that some of the choices in the OSI
“stack” would result in serious noninteroperability, profile groups were
established to whittle down the number of implementation possibilities
from a frighteningly large number of combinations to a manageable few.

Profiles are combinations of protocol and service standards with
(almost) all options either prescribed or proscribed. There are:

o International standardized profiles (ISPs): ISO Technical Report
10000 defines the framework and taxonomy of profiles for interna-
tionally recognized (and recommended) stacks.

» Functional standards: The European Committee for Standardiza-
tion/European Committee for Electrotechnical Standardization
(CEN/CENELEC) develops profiles for the European Economic
Community (EEC).

 Nationally standardized profiles: Government (e.g., U.S., U.K.) OSI
profiles (GOSIPs) identify nationally recommended stacks (U.S.
GOSIP is illustrated in Figure 2.3).

» Commercially standardized profiles: Forums and consortia such as
the OSI Network Management Forum and the North American
Directory Association (NADA) identify stacks, services, and fea-
tures for specific application services.

The problem with profile groups, and the entire ISP standards
process, is that they remain corrupted by the same political maneuvering
that gave us too many standards and choices in the first place. Rather
than making the hard choices—i.e., defining one, mandatory OSI stack—
they continue to permit many to coexist; seriously, now, is having four
really that much better than having nine?

OSI implementation advances almost in spite of all this activity,
although the result of the political in-fighting is that OSI offers islands—
continents, really—of interoperability and must endure an embarrassing
and seemingly endless stream of carping and abuse, even as it struggles
to clean up its act. The National Institute of Standards and Technology
(NIST) OSI Implementers” Workshop (OIW) and the European (EWOS)

20

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

ODA
Office document
architecture
I I
MHS/ FTAM VTP Network| | Directory
X.400 File transfer| | Virtual manage| | services
E-mail access, an(| terminal ment
o managemet| | protocol
7. Application
I I I
ACSE
Association contrc

OSI presentation protoc
I I

6. Presentatic

5. Sessio Session protoct
' I
4. Transpot i <
P Cotnrg(ra]gg%rr]tle\ Transport
protocol Transport protocol class
I I I
3. Network Network ES-IS | Connection-orientet

Connectionless netwo |exchang network service
service (CLNP) protocol | CONS X-25, option:

2. Link LLC X.25 PLH ISDN
. 802.2 802.4 802. LAP-B HDLC
1. PhyS'Ca Baseban . Basic Rate |Primary Rate
Broad- Twistec Interface Interface
Broad- band pair V.35 |RS-23Z|| 28+D 23B+ D
band (64K |ueK) | (64K | 64K)

FIGURE 2.3 U.S. GOSIP (Version 2)

and Asian (AOWS) OSI workshops provide forums in which the base
OSI standards are augmented by precise specification of the details that
make for efficient and interoperable implementations and offer networks
such as OSINET to allow vendors to test OSI equipment in a multivendor
environment. The implementers’ agreements that are produced by these
forums are the raw material of the international standardized profile
approval process.

Finally, there are organizations that define and provide conformance

OPEN SYSTEMS STANDARDS 21

testing, a process in which vendors demonstrate compliance to an OSI pro-
file and completeness of implementation against a “black-box” implemen-
tation. Organizations like the Corporation for Open Systems (COS) and
the Standards Promotion and Applications Group (SPAG), although not
strictly the analogues of Underwriters’ Laboratory, provide such services.

Internet Standards

The development of standards for the Internet traces its ancestry to a
research advisory group established by DARPA in 1980, the Internet
Configuration Control Board (ICCB). For a time, the ICCB controlled all
aspects of the development of the DARPA protocols. In 1983, DARPA
restructured the ICCB and formed a central administrative committee
called the Internet Activities Board (IAB). The IAB coordinated the
design, engineering, and daily operational aspects of the Internet, which
remains formally described as “a loosely-organized international collab-
oration of autonomous, interconnected networks, [that] supports host-to-
host communication through voluntary adherence to open protocols and
procedures defined by Internet Standards (RFC 1310, 2).” In 1986, the IAB
delegated responsibilities for the actual development of Internet stan-
dards to the Internet Engineering Task Force (IETF) and responsibilities
for longer-term (hard-core) research to the Internet Research Task Force
(IRTF) (see Figure 2.4). Until recently, the IAB had the final say in all
Internet standards and research activities. With the formation of the
Internet Society in 1992, the Internet Activities Board became the Internet
Architecture Board and continued its role as a central coordinating body
for Internet activities. The IAB now reports to the Internet Society board
of trustees and supervises the Internet standards and research infrastruc-
ture. The composition of this infrastructure, and its relationship to other
Internet Society activities, may be seen in Figure 2.5.

Like other standards bodies, the IETF is itself made up of working
groups, which are composed of engineers and scientists from the aca-
demic, computer, and telecommunications communities. The working
groups in the IETF are more fluid in nature than most standards bodies
and tend to focus on one subject—perhaps a very specific one, such as
extensions to a protocol, managed objects for a specific transmission
facility, or a single routing protocol—and may meet, complete their
work, and disband in less than a year. This is quite a contrast to the
durability and longevity of, say, an ANSI-accredited working group
such as X353.3, which has existed virtually forever and, after nearly 15

22

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

DOE NSF
DOD NASA

| |
$5 5% ¢ sy sy sy $y
Federal Networkin

Internet Architecture Board

Council
CCIRN
RFCs
Internet standarc
| Internet Engineering Task For:

Internet Engineering Steering Gro

T T .
Applications] Internel ||1letworkmanageme|
OSlintegratior User service

Routing

Internet Research Task Fol

FIGURE 24 Organization of Internet Standards Committees (1986-1992)

years, continues to have responsibilities for providing U.S. national posi-
tions and contributions covering every aspect of the OSI transport and
network layers. (To be sure, there are working groups in the IETF, such
as the SNMP WG, that have had long lifetimes; the point is that they do
not exist in perpetuity.)

IETF working group activities are organized into specific disci-
plines: applications, Internet, network management, operational require-
ments, routing, security, service applications, transport, user services,
and standards management. These areas of activity are supervised by
directors; the directors, together with the IETF chairperson, comprise a
review and advisory committee called the Internet Engineering Steering
Group (IESG). IESG now makes all final decisions regarding Internet

OPEN SYSTEMS STANDARDS 23

Internet Society Members
(Individuals and organizations)

Board of Trustees* Advisory
Council
*Officers
1ISOC President
Secretariat Vice-president (2)
Executive Director Secretary
Publications Treasurer
Committee on Committee Internet International Editorial
Technologically on Disaster| Standards & Research Networking Board
Emerging Relief Infrastructure Conference|
Countries

IETF “Friends
and Family”

The Internet
Standards
Process

FIGURE 2.5 Internet Society Infrastructure

standardization. The Internet Standards Organization (not to be con-
fused with ISO!) is depicted in Figure 2.6.

TCP/IP remains a predominantly U.S.-influenced protocol suite.
However, with the growth in popularity of TCP/IP, and with the in-
creased interest in expanding the Internet to accommodate OSI, interna-
tional organizations have demonstrated a keen interest in contributing to
the understanding, development, and deployment of internetworking
technology. RIPE (Réseaux IP Européens) is a forum in Europe that nur-
tures expertise on IP networking. Working groups of RARE (Réseaux
Associés pour la Recherche Européene) assist the IETF in integrating OSI
application services and protocols into the Internet. RARE is loosely
structured along IETF/IESG/IAB lines of control. Much of the message
handling, directory, and internetworking protocol (CLNP) field experi-
ence obtained thus far on the Internet has been the result of cooperation
between the IETF and RARE.

The core method of specification in the Internet is the request for comment
(RFC). RECs began as a means of documenting technical information
shortly after DARPA started the ARPANET project in 1969. The RFC
“process” begins when an individual or a party (including an external
organization) makes a document publicly available for comment; such
documents are called internet drafts. Internet drafts can be new ideas or

24

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Internet
IETF Engineering — Architecture
Steering Group Board (IAB
Internet [— (IESG) Secretariat (IAB) Internet
Engineering | Research | | |nternet Research
Task Force Task Force Steering Group
(eETF) || IETF Internet (IRTF) IRSG
Secretariat Assigned Number
Authority (IANA)

— Applications Area (APP

Internet Mail Extensions (smtpext)
Internet Mesasge Extensions (822est)
Network Database (netdata)

Network News Transport Protocol (nntp)
Network Printing Protocol (npp)
TELNET (telnet) User Services (uswg)

— Internet Area (INT,

Connection IP (clp)

Dynamic Host Configuration (dhc)
IP over Appletalk (applelp)

IP over FDDI (fddi)

Multi-Media Bridging (mmb)

Router Requirements (rreq)
PIP Internet Protocol (PIP)
IP Address Encapsulation (ipae)

— Network Management area (MGT)
Chassis MIB (chassismib)
DS1//DS3 MIB (trunkmib)

Host Resources Mib (hostmib)

Bridge MIB (bridge)
Character MIB (chamib)
Ethernet MIB (ethermib)

IEEE 802.3 Hub MIB (hubmib)
Internet Accounting (acct)

SNMP Version 2 (snmpv2)
—OS| Integration Area (OSI

MHS-DS (mhsds)
MME-MHS Interworking (mimemhs)

SNMP over a Multi-protocol Internet (mpsnmp)

Network OSI Operations (noop)
OSl Directory Services (osids)
Office Document Architecture (oda)
X.400 Operations (x4000ps)

(Source: Internet Society)

FIGURE 2.6

Distributed Scheduling Protocol (chronos)

IP over Asynochronous Transfer Mode (atm)

Point-to-Point Protocol Extensions (pppext)

TCP/UDP over CLNP-addressed networks (TUH

Token Ring Remote Monitoring (monmib)

X.25 Management Information Base (x25mib)

— Operational Requirements Area (OPS)
BGP Deployment and Application (bgpedepl)
Benchmarking Methodology (bmwg)
Network Joint Management (njm)

Network Information

Centers (NICs;

Domain Names
Administrators

[— End-to-End Research Group
— Autonomous Networks Research Group
|— Privacy and Security Research Group
Operatioal Statistics (opstat)
User Connectivity (ucp) [— Electronic Libraries Research Grou
[— Routing Area (RTG |— Internet Architecture Workshops
Mobile IP (mobllelp)
OSI IDRP over IP (ipidrp) [— Electronic Communities Research Grou,
L— Resource Discovery Research Group

RIP Version Il (ripv2)

Border Gateway Protocol (bgp)

IP over Large Public Data Networks (Iplpdn)
ISIS for IP Internets (Isis)

Inter-Domain Policy Routing (Idpr)

Multicast Extensions to OSPF (mospf)
Open Shortest Path First IGP (ospf)

[— Security Area (SEC)
TCP Client Identity Protocol (ident)
Commercial Internet Protocol Security Option (cipso)
Common Authentication Technology (cat)
Privacy-Enhanced Electronic mail (pem)
SNMP Security (snmpsec)
[— Transport and Services Area (TSV)
Audio/Video Transport (avt)
Distributed File Systems (dfs)

A)

Domain Name System (dns)
Service Location Protocol (svrioc)
TCP Large Windows (tcplw)
Trusted Network File Systems (tnfs)

L— User Services Area (USV)
Internet Anonymous FTP Archives (iafa)
Internet School Networking (isn)
User Documents Revisions (userdoc?2)
Directory Information Services Infrastructure (disi)
Internet Uesr Glossary (userglos)
NOC-Tool Catalogue Revisions (noctool2)

Network Information Services Infrastructure (nisi)

User Services (uswg)

Networked Information Retrieval (nir)

Universal Resource Identifiers (URI)

Integration of Internet Information Resources (jiir)
Whols and Network Information Lookup Service (wnils)

Internet Standards and Research Infrastructure

existing RFCs that may require revision. They are made available to the
public electronically as well as on paper. The technical or informational
merit of internet drafts is discussed openly through regular IETF meet-
ings and electronically through mailing lists. An internet draft that is
expected to become an internet standard proceeds through a standards
“maturity track” that is similar to the ISO standards track: loosely speak-
ing, a “proposed standard (RFC)” corresponds to an ISO CD; a “draft
standard (RFC)” corresponds to an ISO DIS; and a “standard (RFC)” cor-
responds to an ISO IS.

Strictly speaking, there is a significant difference in the process. As
a rule, an internet draft may advance to a proposed standard once the

OPEN SYSTEMS STANDARDS 25

Applicability
Statements,
Requirements
RFCs

Internet community has reviewed and commented on the need for and
stability of its contents. (In cases where a proposed standard may affect a
core aspect of TCP/IP, implementation experience may well be required
before an internet draft is advanced to a proposed standard.) Once an
internet draft has been submitted to the IETF, recommended by the
IESG, and approved for advancement by the IAB, it is forwarded to the
Internet Assigned Numbers Authority (IANA), where it receives an RFC
number.# A proposed standard must remain so for six months; during
this time, experience must be acquired from at least two independent
and interoperable implementations, and any results suggesting modifi-
cations must be addressed. If the proposed standard is demonstrated to
be “mature and useful,” it is advanced to a draft standard. A draft stan-
dard remains so for at least four months. Only after significant imple-
mentation and operational experience is acquired may a draft standard
be advanced to a standard (STD). The process is illustrated in Figure 2.7.

The IAB offers guidance to those who wish to produce interoperable
implementations through applicability statements. There are three main
classifications: if a technical specification is essential to achieving mini-
mal conformance—for example, without IP, your implementation is
pretty useless, and therefore IP is essential—the applicability statement
that is applied is “required”; if the technical specification has been
demonstrated to be truly useful and desirable, but not essential, the
applicability statement that is applied is “recommended”; and if the
technical specification is an enhancement, bell or whistle, the applicability
statement reads “elective.” The requirements levels for all technical spec-
ifications are listed in the IAB Official Protocol Standards document, which
is periodically issued as an RFC (e.g., RFC 1360).

Even in Internet standards, there are options and implementation
considerations that are documented over a series of RFCs. Application of
these RFCs contributes to the overall efficiency and performance of TCP/
IP implementations. However, since RFCs, like ISO standards, are as-
signed numbers sequentially (chronologically), it is often difficult to know
which RFCs are useful and which are not. To this end, a set of implemen-
tation requirements for host computers is documented (RFC 1122; RFC
1123). These serve as a form of implementers’ agreements for the Internet
community. A similar set of requirements is to be developed for routers.

4. Documents that are not expected to become or remain standards—those that are
informational only, experimental, or have become obsolete and are hence “historical”—
may have RFC numbers as well.

26

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Not nifty enougl

L Create a ¢ Tinker, Get folks tc
1 1., —=| Internet —».—» makeit {pm| agreeit's | |
E;j draft nifty nifty -
Proposed | Get at least
standard (RFC two folks to
implementit
Not yet . .
Draft __Isitwidely IAB official
.> standar fpe| implemented, demo standard
(RFC) strably interoperable REC
and useful?

FIGURE 2.7 Internet Standards Process

Parting Comments on Open Systems Standards Processes

There is a perception (all too often accurate) that the OSI standards
process is more apt to converge on a solution that is politically correct
than one that is technically so. Within the OSI standards community,
there also appears to be a tendency to compromise by embracing multi-
ple solutions to a single problem as well as a tendency to create and tin-
ker with new technology within committees often without the implemen-
tation and experimentation that is necessary (essential) to determining
whether the technology is useful. These tendencies are inherently bad,
and work progressed in this manner has a detrimental effect on the good
work brought into OSI by organizations that went through the more
rational process we associate with “R&D.”

Committees are not laboratories for research, nor are they useful
venues for field experimentation; all too often, ISO and CCITT standards
committees hammer out compromises that have a significant impact on
technology with regard only for the holy spirit of compromise (notewor-
thy examples here abound: the Ethernet type field versus the IEEE 802.3
length field, the selection of a 48-byte length for the ATM cell, multiple

OPEN SYSTEMS STANDARDS 27

transport protocols for conformance). Committees should confine their
activities to evaluating proposals of some demonstrated merit, with the
aim of selecting those that are most likely to solve real networking prob-
lems. They should also contribute toward getting technology out of the
laboratory and into the marketplace.

The TCP/IP standards community does a better job at this than the
OSI community (although this, too, is changing: as the availability of OSI
products grows, and OSI networks grow as well, a competence in OSI
operations is slowly forming, and there is an increasing emphasis on
interoperability). In the Internet, whether it is OSI or TCP/IP or hybrids
thereof, the community attempts to perpetuate the rich tradition and
image of “research and technology first.” Quite often, even internet
drafts have had some, albeit limited, field experience. And there is con-
siderably less willingness to compromise in the TCP/IP community;
here, there is more of a “winner-take-all” attitude, and those who have
competing technologies often conduct what have become known as
implementation “bake-offs” to test the mettle of the alternatives. The
Internet has become a very good place for folks interested in acquiring
OfSl field experience.

The OSI standards community also suffers from an excessive con-
cern for general applicability. Because of its international exposure, and
partly because some of the participants don’t know when to stop, OSI
must support everything, and in a glorious and ultimate manner. In OSI,
it often seems that solutions exhibit the properties of a gas, expanding to
fill any container in which they are placed. In TCP/IP, solutions are
often more modest and incremental; you'll never see the word simple or
trivial as part of the name of an OSI protocol, but Internet standards
developers covet those modifiers and are proud to include them, when-
ever possible, in the names of Internet standards.

Some of the differences between the two communities can also be
attributed to size. In his defeat of the Spanish Armada in 1588, Sir Francis
Drake demonstrated that small and maneuverable corsairs could defeat
significantly larger warships. The TCP/IP community has a similar
advantage over the OSI standards community. Although it is growing—
and even today is facing some of the same difficulties that have faced the
OSI standards community—the TCP/IP community has remained at a
very manageable size, which allows standards makers considerable lati-
tude in coming to closure on specific issues. OSI standards makers inher-
ited the enormous bureaucracy that facilitated the construction of a global
telephone service and established standards for mundane items such as
wineglasses and prophylactics as well. A bake-off is a reasonable and

28

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

eminently practical way to select a management or routing protocol partly
because the community remains small enough that nearly everyone can
understand and accept the results of a handful of implementations on
technical merit alone. Bake-offs aren’t as easy to conduct when countries
that have either recently or forever been at war are involved, especially if
they happen to be proponents of competing technologies.

Another difference lies in composition; participation in international
standards making is expensive and time-consuming. Few members of
the research community have the budget (or for that matter, the stomach)
for standards work (even if more of them had, the politics of open sys-
tems would remain an exasperating and significant deterrent); hence,
only the big guns from the commercial sector and public providers
attend.

It is also true that the stakes in standardization are different. For the
moment, TCP/IP is a cash cow. From an economic standpoint, the entire
TCP/IP community—network providers, equipment manufacturers, and
end users—stands to profit by rapid closure on issues. At an international
level, however, what is profitable for one country may be unprofitable
for another, and hence, a national delegation, or community of delega-
tions, attending an ISO or a CCITT meeting may have a stronger incen-
tive to thwart or impede progress as a protectionist act than any vendor
attending the IETF could imagine. To accommodate the needs of a larger
and considerably more diverse community, OSI standards makers often
have little choice but to compromise in ways that in other circumstances
might be considered incomprehensible.

There is also a difference in process. Here, the agility factor again
plays in favor of the TCP/IP community. OSI is an international effort.
The Internet community is largely a U.S. effort, and although the effort is
becoming more international in nature, there remains a decidedly
Caesarian attitude in the IETF—the governors of remote outposts are
expected to come to Rome to visit Caesar and not vice versa (this, too, is
changing, but slowly). Advancement of standards in OSI requires collab-
oration and consensus across a very wide variety and number of individ-
ual standards bodies. This translates into an overload of liaisons and
meetings. ISO/CCITT standards goers and doers have to attend dozens
of meetings a year to get something done, if only to see the advancement
of a standard through the process without any damaging results. ISO
standards preparation also involves translation among three languages
(English, French, and Russian), which tends to slow things down—par-
ticularly near the end of the process.

Finally, there is a difference in document distribution and availabilty.

OPEN SYSTEMS STANDARDS 29

TCP/IP standards are free. They can be obtained electronically through
the Internet itself, 24 hours a day, or requests can be made for postal
delivery. There are on-line help facilities to get interested parties through
the process. There are useful informational RFCs like the Hitchhiker’s
Guide to the Internet (RFC 1118), and helpful information services organi-
zations such as the Internet network information center (InterNIC).
Furthermore, members of the Internet can use the existing network infra-
structure to conduct useful work between meetings through mailing lists,
using the very technology they standardize. ISO and CCITT standards
are difficult to identify, hard to acquire, challenging to read, and hideous-
ly expensive. Consider that the full set of CCITT Blue Books is “discount
packaged” by resellers for approximately $3,000! Even the OSI MHS
package alone costs $363. This simply doesn’t make sense: if standards
makers want open systems, then they should be doing everything possi-
ble to make standards freely available and easy to access. ISO and
CCITT, and their associated national standards bodies (such as ANSI),
are doing exactly the opposite. The Internet has the right idea. Inter-
national standards organizations should wake up and smell the coffee
brewing.

PART TWO

memsmmmsmssm OPEN NETWORK ARCHITECTURES

CONCEPTS AND
TERMINOLOGY OF
OPEN SYSTEMS

Introduction

Throughout Open Systems Networking: TCP/IP and OSI, the terminology
and concepts of OSI are used to describe open systems architectures.
Although its terminology is certainly original, most of the basic concepts
of OSI—the layered model, service definitions, hierarchical naming and
addressing, internetworking, and subnetworks—are derivative, having
been derived from principles that were established by other architec-
tures, especially TCP/IP, and documented in different ways. The impor-
tant contribution of OSI is not the concepts but the way in which they
have been expressed in the form of a comprehensive “reference model”
of open systems interconnection—the Basic Reference Model of Open
Systems Interconnection (ISO/IEC 7498: 1993).! The use of the descriptive
tools of the OSI architecture as the basis for describing the general open
systems principles of layering, naming and addressing, protocol specifi-
cation, and service definition throughout this book recognizes not that
OSI as a whole is worthier than TCP/IP or other protocol suites but that
the OSI architecture is widely known, and its terminology and concepts
are readily accepted as the basis for architectural descriptions.

The terminology and specification of TCP/IP present a striking
contrast to OSI. The ARPA researchers (at the time they built it, DARPA
was actually ARPA) who built the first TCP/IP networks freely admit
that they were not terribly concerned with defining an architectural
model. Of course, over time, the urgency of formally documenting the

1. The new second edition of ISO/IEC 7498 will be published in 1993. It has already
been published by CCITT as Recommendation X.200-1992.

33

34

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TCP/IP architecture has waned; unlike OSI, TCP/IP is defined by the
real networks (including the vast Internet) that implement it, not by the
relatively few documents that describe it. Thus, although there are several
landmark journal articles that describe the architecture of TCP/IP
(Cohen and Postel 1983; Cerf and Cain 1983) and a retrospective RFC
(RFC 871), much of what is known about the architecture of TCP/IP re-
mains folklore.?

This chapter avoids attributing basic architectural principles to any
particular open systems architecture, focusing instead on the way in
which those general principles are expressed by OSI and by TCP/IP. It
examines the pleonastic® terminology of OSI and compares it to the blue-
collar language of TCP/IP and identifies the core set of terms and defini-
tions that are used throughout this book. Readers will note that the
authors owe no strict allegiance to either OSI or TCP/IP. Although OSI
and TCP/IP terms are used when protocol-specific terminology is neces-
sary, the authors use what they believe to be the best terminology from
the entire field of networking for the general discussion of the character-
istics and principles that are common to both protocol suites.

Architectures

An architecture is an abstract model of some part of the real world—in
this case, a model of the organization and behavior of networks consist-
ing of interconnected, communicating computer systems and applica-
tions. Because it is an abstraction, it is a useful device for describing con-
cepts and relationships in a clear and concise fashion, without cluttering
the description with references to the characteristics of specific systems
or applications. The utility of such an architectural description depends
on the power of the abstraction (how successfully the architecture ex-

2. In an electronic-mail exchange, Jon Postel assisted the authors” archaeological dig for
TCP/IP architectural artifacts but warned us that “any writing about the ARPANET proto-
col architecture is after the fact (probably revisionist) history.” The authors interpret Jon's
comment not as an implication of TCP/IP writers in an Orwellian scheme to present a
deliberately spin-controlled version of the architectural origins of TCP/IP but rather as a
recognition that, for example, a paper written seven to ten years after the fact may perceive
an “architectural principle” in what was really just good fortune or the result of a series of
hits and misses. In fact, of course, Jon Postel is the TCP/IP architecture; any attempt to
“improve” the documentation of TCP/IP by replacing Jon with a document, however well
constructed and thorough, would be an enormous step backward.

3. At the risk of being accused of pedantry, the authors feel the word pleonastic, derived
from pleonasm, or “the use of more words than are necessary to express an idea,” is simply
too accurate to eschew.

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 35

presses important concepts and relationships and suggests new ones)
and on its relevance (how useful the architecture proves to be in the
development of real systems and networks).

For designers and builders of networks and the distributed applica-
tions that use them, the development of an architectural description of
the environment in which the many individual components of their de-
signs and implementations will interact serves two essential purposes.
First, it creates a global conceptual framework within which the relation-
ships among individual components can be studied and explored at a
common level of abstraction. This framework encourages broadly based
solutions to problems, since it places each component in an abstract con-
text that illuminates its interactions with other components. Second, it
serves as the basis for formal descriptions of the characteristics of indi-
vidual components, becoming a “global functional specification” for the
distributed environment. Like any functional specification, it establishes
a common reference point for the behavior of the designs and implemen-
tations that follow from: it.

Open Systems

Open systems are “open” by virtue of their mutual adherence to one or
more open systems standards, which specify those aspects of the behav-
ior of an open system that are directly relevant to its ability to communi-
cate with other open systems. There are many open system specifications
and standards, each of which belongs to a particular architecture (e.g.,
OSI or TCP/IP). An architecture is typically described by a reference
model, which expresses the organizing principles of the architecture (the
reference points) and provides a framework (a model) within which the
various services and protocols, and the relationships among them, may
be defined. Thus, for OSI, we have the OSI reference model (OSI RM);* for
TCP/IP, the Internet architectural model or, simply, the Internet archi-
tecture.

The term architecture suggests an analogy between a reference
model and the elements of the more familiar architecture of buildings. A
building-construction manual is concerned with generally applicable
truths about building: “The roof goes on the top, and the basement goes

4. Or simply RM for short. One often encounters the equivalent acronym ISORM, for
“ISO reference model” (reflecting the provenance of both the OSI architecture and the asso-
ciated standards), as in “ISORMites” (devout disciples and defenders of the OSI faith).

36

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

on the bottom,” or “Plumbing is good.” This is just the accumulated wis-
dom, or perhaps common sense, of the builder’s craft. A local building
code is much more specific: it specifies the use of a particular grade of 4-
inch PVC pipe supported at no less than 1-foot intervals (etc.), or it man-
dates conformance to an American Society for Testing Materials standard
for the flammability of roofing material. The blueprints for an office
building are even more specific: they specify, very precisely, every detail
of the construction of an actual building, giving the length and placement
of every piece of 4-inch PVC pipe and the brand name and stock number
of the roofing material.

The principles of construction that are collected in the manual are
assumed to be universal. There are, however, a great many local building
codes, each of which “conforms” to the generally accepted principles of
construction. And within the jurisdiction of a single building code, an
almost infinite variety of actual buildings can be constructed.

The OSI reference model describes both the general principles of
open systems networking and the specific prescriptions for open systems
that follow the OSI architecture. Like the building-construction manual,
the OSI reference model collects “universal truths” about open systems:
layers are good; internetworking accommodates many different types of
real-world networks; addresses must be unambiguous. Like a building
code, the OSI reference model also defines an abstract model of an open
system: not only are layers good, but OSI has seven of them; internet-
working functions are in the network layer; and addresses in OSI are not
only unambiguous, they are constructed in a particular (hierarchical)
fashion. However, just as a building code doesn’t describe any particular
building, the OSI reference model doesn’t describe any particular imple-
mentation of a real open computer or communications system.

In fact, it could be argued that the scope of the OSI reference model
is even more limited than that of a building code, since it specifies only
the externally visible behavior of an open system and carefully avoids
issues that are not directly relevant to the ability of the system to commu-
nicate with other open systems. A building code might prescribe PVC
pipe for drain lines in residential construction, although the requirement
is actually for pipe with certain characteristics (thermal stability, resis-
tance to corrosion, etc.), whether made of PVC or an equally suitable
material. The OSI reference model specifically refrains from defining the
characteristics of an open system, such as how to manage buffers or pass
information from one process to another, that are not relevant to the
interconnection of open systems. This restraint is essential, since such
restrictions would be based on assumptions about the current state of the

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 37

art. In addition to reducing opportunities for competitive differentiation
among open system vendors, they might easily deter innovation in com-
puter hardware and software design.

Architecture Wars

The “architecture wars” between OSI and TCP/IP involve primarily the
building-code aspects of open systems. Very few people get into argu-
ments about whether or not plumbing is a good thing or whether or not
it is useful to organize the functions of an architecture into layers; many
plumbing contractors, however, are quite willing to debate the merits of
copper pipe over PVC, and similarly, network engineers will debate
whether security functions belong in the transport layer or the network
layer. Anyone associated with the construction business knows how
many different variations on the same basic theme can be captured by
different codes; nevertheless, buildings constructed according to codes in
Massachusetts and Pennsylvania are (presumably) equally habitable.
The differences between the OSI and the Internet architectural models
are almost entirely variations on themes that are common to all open sys-
tem architectures: layers, services, protocols, and other generally applic-
able concepts from the open system cookbook.

Layers

Many functions must be performed above the transmission media (the
“wires”) to support useful communication between computer systems.
For example, it is often necessary to ensure that the information sent
from one computer to another arrives in order, uncorrupted, and with-
out loss or duplication. If the two computers are physically attached to
different transmission media (e.g., one to an Ethernet local area network
and another to a public, packet-switching network), it is also necessary
to define a function that selects a route and forwards data over multiple
“hops” from source to destination. Additional functions encode and pre-
serve the semantics and context of information as it is understood by a
distributed application (a networked file service, electronic mail, or a
directory service) running on several communicating computer systems.
As an example, consider this partial list of the functions that might
be performed by communicating computers (real-world open systems)

38

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

to accomplish the transfer of a file from one system to another:

* Access to the local file transfer service

« Identification of the application (and destination computer) to
which the file is to be transferred

+ Establishment of communications between the peer applications
that will be involved in the file transfer

 Determination of a common representation of the information to be
transferred, including both file and data structure

+ Access via the local file storage facility to the contents of the file to
be transferred

o Selection of the network service and/or transmission media
through which the contents of the file must travel (routing and for-
warding)

+ Data fragmentation and reassembly

+ Physical-level signaling and bit transmission

+ Reliable transportation of the contents of the file from source to des-
tination, resulting in an exact duplicate of the original file at the
destination

Although it would be possible to do so, specifying one humage®
protocol to deal with all these functions would be inefficient, inflexible,
and inordinately complex; in fact, just plain silly. Imagine, for a moment,
what the state machine would look like!

The principle of layering solves this problem by collecting functions
into related and manageable sets. For example, the functions associated
with reliable data transport (detection and correction of lost, misordered,
duplicated, or corrupted packets) logically form one set; those that handle
routing and forwarding, another; and those that handle data representa-
tion, a third. In the process, the sets of functions are organized in a hierar-
chy. Data representation, typically viewed as an application-oriented or
“end-user” function, sits on top of the reliable delivery or “end-to-end
transport” functions, so that the end-user functions can make use of the
end-to-end functions (i.e., they won’t have to duplicate them). Both the
OSI reference model and the Internet architectural model call the related
and manageable sets layers.

Layers are good, but how many layers? The OSI reference model
specifies seven (Figure 3.1), which have gradually assumed an almost

5. The origin of this word is attributed to Matthew Piscitello (age 4 at the time), who
could not discriminate between daddy’s use of humongous and mommy’s use of huge, so
he created his own.

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 39

— N W ke O

Application| 7

Presentation 6

Sessi on 5

Transport | 4

Network | 3
Datdink | 2
Physical |1

FIGURE 3.1 OSI Reference Model

holy significance and to which other, less sacred architectures are often
compared.

The Internet architecture specifies five layers (Figure 3.2), combin-
ing the functions of the OSI application, presentation, and session layers
into a single application layer.

SATH Ao One might suppose that the people responsible for the OSI ref-
erence model believed that seven is, in fact, the “right” number
of layers for an open systems architecture or that the Internet architects, after
careful analysis, determined that five is the “right” number. Precedent, of
course, argues for the mystical properties of the number 7; there are, after all,
seven dwarfs:

Sneezy 7 Wrath
Sleepy 6 Sloth
Dopey 5 Lust
Doc ... and seven deadly sins: 4 Awvarice
Grumpy 3 Gluttony
Bashful 2 Envy
Happy 1 Pride

40

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

A Quick Tour of
OSI’s Seven
Layers

Appl i cation
Transport

| nt er net
Net wor ki nt er f ac
Physi cal

FIGURE 3.2 Internet Reference Model

But in fact, the architects of both OSI and the TCP/IP protocol suite had
never seriously worried over the fact that their respective architectural models
had a particular number of layers and certainly never anticipated that the num-
ber of layers in the OSI reference model would become, one day, the only thing
that many people would remember about the architecture.

Needless to say, there is nothing special about the number 7, nor is
the fact that the OSI reference model has seven layers and the Internet
architecture has five deeply significant. What is important is the way in
which the OSI and Internet architectures allocate functions among the
layers and the ensuing consequences for the operation of OSI and
Internet systems and the development of distributed applications.

The application, presentation, and session layers of the OSI model are
collectively referred to as the upper layers (Figure 3.3). They provide end-
user services: the functions that enable applications to share and manipu-
late information. Not surprisingly, the remaining layers (transport, net-
work, data link, and physical) are collectively referred to as the lower lay-
ers.® They provide an end-to-end data transport service, organizing the
communication resources that exist in the real world to carry information
from any source system to any destination system.

The upper layers are application oriented; they focus on the applica-
tion processes that are the ultimate “end users” of OSI. They operate as
though they were directly connected to all their peers at the transport ser-
vice boundary, without regard for the way in which their communication
is actually accomplished. The lower layers are communications oriented;
they focus on the job of supporting the upper layers’ complacent fiction

6. In some circles, the transport and network layers are referred to as the middle layers.

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 41

Application

Presentation The upper layers

Session

Transport

Network

The lower layers

Data link

Physical

FIGURE 3.3 The Great Divide

that they are directly connected by arranging for data to be transported
out of one host computer or end system; across the arbitrarily complex
and heterogeneous real world of wires, fiber, ether, carrier networks,
bridges, and routers; and into another end system.

The application layer provides access to OSI services. It is also (con-
ceptually) the place in which distributed applications reside and in
which they access the networking environment.

The presentation layer isolates applications from concerns about the
representation (syntax) of the data they exchange, allowing them to deal
only with their meaning (semantics). It defines a common or canonical
form for the representation and manipulation of application information.
Some computers use EBCDIC as the native character encoding, and oth-
ers use ASCII, and different computers and operating systems store
information in memories or disk files in different ways. Presentation
layer functions allow applications to represent their data in a machine-
independent fashion by providing a universal language in which to
describe abstract data structures. By offering what is often called a com-
mon network programming language, the presentation layer allows
applications to exchange structured information rather than raw bit
strings. It also defines the way in which elements of that language are
actually transmitted from one system to another. The presentation layer
is thus responsible for transforming information from machine-specific
data structures common to the source computer into machine-indepen-

42

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

dent data structures for transmission, and from machine-independent
data structures for transmission to machine-specific data structures com-
mon to the destination computer as data are received.

The session layer provides mechanisms for organizing and synchro-
nizing the exchange of data between application processes. Session per-
mits an application to mark its progress as it sends and receives data
(synchronization points), provides ways for applications to control the
direction of information flow (turn management), coordinates multiple
independent exchanges (“activities”) within the overall context of a sin-
gle session, and allows applications to inform each other about the occur-
rence of errors and the steps to be taken to resynchronize part or all of
the affected dialogue(s).

The transport layer provides “transparent transfer of data from a
source end open system to a destination end open system” (ISO/IEC
7498: 1993). Transport is responsible for creating and maintaining the
basic end-to-end connection between communicating open systems,
ensuring that the bits delivered to the receiver are the same as the bits
transmitted by the sender: in the same order and without modification,
loss, or duplication.

The network layer provides “a path between transport entities, reliev-
ing the upper layers from dealing with the way in which data are trans-
ferred from one end open system to another” (ISO/IEC 7498: 1993).
Network determines the path or route that the data must take from origi-
nal source to final destination and forwards the data over that route. It
provides a service that is independent of the underlying transmission
media and includes all of the routing, relaying, and interworking functions
needed to get from source to destination, regardless of the number or type
of transmission resources that may be used in tandem or in parallel.

AHE A Tﬁe'boundary b.etween the transport and 'network layers was
originally conceived by early telephony-oriented OSI develop-
ers as a representation of the traditional regulatory boundary between customer
premises equipment (CPE) and a public carrier network: CPE contained trans-
port and the upper layers, and the carrier network implemented the network and
other lower-layer functions. This model assumed a pervasive global carrier net-
work to which every end system was directly attached. The popularity of LANs
and other privately deployed networks based on the concept of “internetwork-
ing” had made this model obsolete even before the work on the OSI reference
model was completed. The result is a network layer with an extensive internal
structure, containing both internetworking functions (which are independent of

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 43

any particular network technology) and network-specific functions (which vary
depending on the type of real-world network involved). The Internet architec-
ture captures this distinction much more clearly, by defining separate “inter-
net” and “network-interface” layers.

About all the OSI reference model can think of to say about the data
link layer is that it “provides for the control of the physical layer, and
detects and possibly corrects errors which may occur” (ISO/IEC 7498:
1993). The data link layer couples to a particular physical access method
whatever functions are necessary to recover bit-stream errors that may
be introduced during transmission (due to “noise,” clock jitter, cosmic
rays, and other forms of signal interference).

The physical layer provides “mechanical, electrical, functional, and
procedural means to activate a physical connection for bit transmission . . .”
(ISO/IEC 7498: 1993), which is OSI’s attempt to dress up the unvarying
role of the physical layer in any network architecture: to transform bits in
a computer system into electromagnetic (or equivalent) signals for a par-
ticular transmission medium (wire, fiber, ether, etc.).

AH A The data ‘link ‘and physical layers appear in the QSI referen‘ce
model primarily for the sake of completeness (during the delib-
erations over the text of the reference model, it often seemed to the authors that
somewhere, someone with considerable authority had declared, “Let there be
nothing in the world of communication for which OSI has no layer”). Since
these two layers deal with functions that are so inherently specific to each indi-
vidual networking technology, the layering principle of grouping together relat-
ed functions is largely irrelevant. This has not, of course, prevented endless
arguments about whether there is or is not an addressing function in the data
link layer or whether medium access control for an IEEE 802 local area network
is a data link layer function or a physical layer function.

For most real network technologies, it is both impractical and
unnecessary to determine where the boundary between these two layers
lies or even whether to describe the functions of the real network as
“data link layer functions” or “physical layer functions.” Since many real
networks also include functions that are, from the technical standpoint of
the OSI architecture, “in the network layer,” the TCP/IP model of real
networks as simply individual network services is much better. OSI rec-
ognized this after the fact by introducing what amounts to a codicil to its

44

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

A Quick Tour of
Internet’s Five
Layers

reference model’—namely, the “subnetwork” concept, which collects
everything below the OSI internetworking protocol into a single abstrac-
tion, forgoing formal discrimination of network layer functions, data link
layer functions, and physical layer functions.

How does the OSI allocation of functions among seven layers compare to
the layering applied in the Internet architecture? In Internetworking with
TCP/IP, Douglas Comer (1991) characterizes the TCP/IP architecture as
comprising application-level and network-level internet services. This
distinction between upper layers (actually, in the Internet architecture, a
single upper layer) and lower layers follows the same logic for TCP/IP as
for OSI (see Figure 3.4).

The application-level internet services are a set of application pro-
grams that operate across a TCP/IP-based internet. All of the end-user
functions, which are divided among three OSI layers, are incorporated in
the TCP/IP architecture into each application program individually.
TCP/IP applications, therefore, are designed to operate directly over a
raw transport interface.

Ap | | cat | on Appl i cati orservi ces
p (upper | ayer)

Transport

I nt er net

Net wor k ser vi ces

(1 overl ayers)

Net wor ki nt er f ace

Physi cal

FIGURE 34 Upper Layer/Lower Layers Distinction in TCP/IP

7. The codicil is the Internal Organization of the Network Layer (ISO/IEC 8648: 1988),
which was published five years after the reference model as a way of “burying the hatchet”
in the war between two factions, each of which painted the other in extreme terms. Faction
1, the network-centrics, saw the world as composed of powerful, pervasive public data net-
works that graciously suffered the attachment, for a fee, of relatively insignificant pieces of
end-user equipment; faction 2, the host-centrics, saw the world as composed of a global fra-
ternity of vigorous, autonomous computer systems and LANS, filled with important end-
user applications, which occasionally, when it could not be avoided, permitted the public
networks to carry some of their communication.

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 45

The network-level internet services correspond more or less directly
to the services provided by OSI’s lower layers. The OSI transport layer
provides much the same end-to-end communications service as the
TCP/IP transport layer. OSI offers both virtual circuit (connection) and
datagram network layer services (see “Connections and Connectionless,”
later in the chapter); TCP/IP offers only a datagram internetworking ser-
vice. The network interface layer in the TCP/IP architecture corresponds
to a combination of the OSI data link layer and the network-specific func-
tions of the OSI network layer. The physical layer, of course, does what
the physical layer must do.

The monolithic upper layer in the Internet architecture reflects the
deliberate involvement of the TCP/IP architecture in the way in which
distributed applications are organized. In this respect, OSI provides a
more comprehensive model. On the other hand, the correspondence
between the lower layers of the Internet architecture and real-world
internetworks is much clearer and more accurate than it is in the OSI
case. It has been suggested that OSI is the “better” model of distributed
applications and that TCP/IP is the “better” model for the networks that
support their communication.

Terminology

The principles applied to the development of the OSI reference model
are similar to those of the TCP/IP architecture; unfortunately, the termi-
nology is not. The OSI architects were convinced that none of the famil-
iar terms of network engineering, freighted as they were with preexist-
ing real-world connotations, would suffice for the highly formal and pre-
cise descriptions they imagined for their reference model. The elusive
and mystifying world of “OSI-speak” was created to insulate the ethereal
and pure concept space of OSI from contamination by the existing net-
works of mortals. The resulting terminology reads more like German
existentialism than Tanenbaum’s Computer Networks (1988).

OSI is unquestionably encumbered with too many obscure terms
with confusing definitions. A definition is supposed to be “a brief and
precise description of a thing by its properties” (Thatcher and McQueen
1977). OSI's definitions are far from brief and are often imprecise; in
many cases, brevity and clarity are sacrificed for the sake of either preci-
sion or political compromise. The language of TCP/IP (“Internet-ese”),
on the other hand, is disarmingly accessible and bears a striking resem-
blance to terms that one might use to describe real networks.

46

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Nevertheless, it is difficult to understand either OSI or TCP/IP with-
out first becoming familiar with some of the most frequently used termi-
nology. In some cases, readers need to be familiar with a term because it
expresses an important concept; in other cases, they need to be familiar
with a term because they will encounter it in the OSI standards and will
otherwise be inappropriately intimidated by it. Since most of the difficult
terminology belongs to OSI, most of what follows applies to that architec-
ture; except where noted, the terminology of TCP/IP is intuitive.

AH A The situation regarding terminology is similar to that in
which Owl finds himself in the House at Pooh Corner:

Owl explained about the Necessary Dorsal Muscles. He had explained this to Pooh
and Christopher Robin once before, and had been waiting ever since for a chance to
do it again, because it is a thing which you can easily explain twice before anybody
knows what you are talking about (Milne 1954).

Entities

In the OSI architecture, the service provided by a layer is, conceptually,
the result of the collective activity of all the computer systems that partic-
ipate in OSI. Each open system contains components (vertical slices) of
each layer that OSI calls subsystems. A subsystem represents the function-
ality of a single layer that is actually present in an individual open sys-
tem. An open system therefore contains seven subsystems, each one cor-
responding to one of the seven layers identified in Figure 3.1. Collectively,
subsystems of the same rank form a layer.

All the functions present in a given subsystem may not be active at
the same time. For example, if a layer offers both a datagram and a virtual-
circuit type of service, but only the datagram service is being used, then
only the datagram-oriented functions of that layer are active. The active
elements within a subsystem are called entities.

In effect, an entity is the “stuff” inside a layer. Informally, the terms
layer entity, entity, and layer are used interchangeably, with the under-
standing that the formal meaning is “an active element within a hierar-
chical division of an open system” (ISO/IEC 7498: 1993).

AH A Given the multinational composition of the standards organi-
zations responsible for OSI, it is not surprising that a great
deal of enerqy is expended in the selection of universally acceptable names for the

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 47

“things” to which open systems networking standards must refer. Early in the
OSI work, it became clear that an architecturally neutral term for the “thing”
that sits in an OSI layer and represents the activities that take place there would
be needed. Process, module, and other terms borrowed from the realms of pro-
gramming languages and operating systems all carried the implication of imple-
mentation, and the OSI architects were particularly concerned to avoid the
impression that every “thing” in the OSI architecture necessarily finds its coun-
terpart in an implementation. They came up with the wonderfully metaphysical
term entity, which the Oxford English Dictionary defines as “Being, exis-
tence, as opposed to non-existence; the existence, as distinguished from the qual-
ities or relations, of anything.” Perfect! Then, returning from the meeting in
Berlin at which the agreement on this term was reached, Lyman noticed the
following posted on the underside of the toilet cover in the lavatory of the air-
plane, which added an entirely unique perspective to OSI terminology.

DO NOT THROW
[] cups towels]
[] bottles napkins []
[] razorblades diapers]
entities
IN TOILET

Notation

The notations (N), (N+1), and (N-1) are used to identify an arbitrary
layer entity and the layer entities hierarchically adjacent to it (Figure 3.5).
Typically, the value of (N) is an integer (1 through 7; the physical layer is
numbered 1, and the application layer is numbered 7). In many OSI stan-
dards, the first letter of the name of a layer is used for (N) rather than an
integer. Thus, the terms layer-4-entity, (4)-entity, transport entity, and T-
entity all refer to the same thing.

Services

The relationship between (N)-entities in adjacent layers is expressed in
OSI by the following concepts and terms:

48

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

(Nt1)-entity

(N-D-entity

FIGURE 3.5 Entity Notation

» Each (N)-entity performs (N)-functions.

» The (N+1)-entities assume that a well-defined set of (N)-facilities is
provided by (N)-entities.

+ The set of (N)-facilities that (N)-entities provide to (N+1)-entities is
called the (N)-service.

Thus, the transport layer performs transport functions and provides
a set of transport facilities that constitute a transport service to the ses-
sion layer. Similar terminology applies to the TCP/IP architecture; for
example, the TCP/IP internet layer provides a datagram service to the
transport layer.

OSI takes great pains to formally define services, and a service-defi-
nition standard is provided for each layer. The purpose of the service
definition is to formally identify the functions to be performed (and the
facilities to be provided) by a layer, so that a protocol can be developed
to provide a well-defined and manageable set of functions. The existence
of a formal (N)-layer service definition also assists in the design of layer
(N+1), since it can be assumed that certain functions are already per-
formed in layer (N) and (in theory) should not be duplicated at any layer
above (N). For example, if the transport service provides end-to-end reli-
able delivery, the session layer should not.

Services provide a formal way to express the relationship that exists
between an entity in one layer and an entity in a layer immediately above
or below it. The OSI service model contains the following elements:

+ A user of the service provided by layer (N) resides at layer (N+1),
and is called an (N)-service-user.

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 49

 The elements involved in the provision of the (N)-service are called
(N)-entities (as described in the preceding section).

+ The (N)-entities that actively participate in providing the (N)-ser-
vice are collectively referred to as the (N)-service-provider.

+ The (conceptual) point at which an (N)-service is provided to an (N+1)-
entity by the (N)-service provider is called an (N)-service-access-
point, or (N)-SAP.

+ The information exchanged at an (N)-SAP is called (N)-service-data,
and individual units of that data are called (N)-service-data-units, or
(N)-SDUs.

These relationships are illustrated in Figure 3.6.
Applying these principles to the specific example of the interaction
between the session and transport layers, we have the following:

+ A session entity, a user of the service provided by layer 4, the trans-
port layer, resides at layer 5 and is called a transport service user.

+ The elements involved in the provision of the transport service are
called transport entities.

» The transport entities that actively participate in providing the
transport service are collectively referred to as the transport service
provider.

+ The (conceptual) point at which the transport service is provided to
a session entity by the transport service provider is called a trans-
port service access point, or TSAP.

» The information exchanged at a trasport service access point is
called transport service data, and individual units of that data are
formally called transport service data units, or TSDUs.

(N -servi ce-
user

(N -servi ce-
user

(N) - SAPs Layer (N+1)

Layer (N

(N -servi ceprovi de

FIGURE 3.6 Generic Service Model

50

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

The Queue Model

The OSI service model provides a convention for describing the interac-
tions between adjacent entities. The exchanges across a service boundary
are modeled as a pair of queues, where each exchange represents an
atomic (simultaneous) interaction at two (N)-SAPs (see Figure 3.7). Ob-
jects, called service primitives, are placed in or removed from a queue by
the service users and by the service provider. The service primitives indi-
cate some action that must be (or has been) performed by one of the
other participants in the service interaction.

As an example, imagine that (N)-service-user A wishes to establish
an (N)-connection to (N)-service-user B. An object, the (N)-CONNECT
service primitive, is submitted by (N)-service-user A to the (N)-service-
provider in the form of a request primitive; i.e., it is placed in an imagi-
nary queue that exists between service users and the service provider.
This is step 1 in Figure 3.8. The queue is accessible via A’s (N)-service-

Queue fromAto B
Queue fromBto A

Ser vi ceor ovi der

FIGURE 3.7 The Queue Model

(N -servi ce- (N -servi ce-
user A user B

(4) Confirmatio (3) Respons
(1) Reque? (N) - SAP ¢/ Layer (N+1) N) - SAP E

(
Layer (N I(z) I ndi cat

(N -servi ce-provi der

FIGURE 3.8 Confirmed Service

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 51

access-point. The (N)-service-provider removes the request primitive
from the queue and informs (N)-service-user B of the request by insert-
ing an (N)-CONNECT indication primitive in the queue (step 2). (N)-ser-
vice-user B accesses the queue via its own (N)-service-access-point. B
removes the indication primitive from the queue and accepts the connec-
tion request by placing a positive (N)-CONNECT response primitive in
the queue (step 3). The (N)-service-provider removes the response primi-
tive from the queue and places a confirmation primitive in A’s queue
(step 4). OSI calls this a confirmed service.

There is also an unconfirmed service. Here, only the request primitive
is available to (N)-service-users, and only the indication primitive is
available to the (N)-service-provider. (N)-service-user A places the re-
quest primitive in a queue when it wishes to send (N)-service-data to
(N)-service-user B. The (N)-service-provider places the indication primi-
tive in a queue to:

» Notify (N)-service-user B of a request from (N)-service-user A.
» Notify one or more (N)-service-users of an event or action insti-
gated by the (N)-service-provider (hence, the term provider-initiated).

The unconfirmed services are illustrated in Figures 3.9 and 3.10.

Connections and Connectionless

One of the most basic concepts of network architecture is the distinction
between the connection and connectionless models of communication. The
connection model is based on the establishment and maintenance of
“state information” that is held in common by the communicating par-

(N -servi ce- (N -servi ce-
user A user B
(1) Req¥>\(N)-SAPA Layer (N+1) /r\/n) SAP B
Layer (N 7(2) Indicatior

(N - servi ce-provi der

FIGURE 3.9 User-initiated Unconfirmed Service

52

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

(N -servi ce- (N -servi ce-
user A user B

\(N)-SAPA Layer (N+1) /I\/J)-SAPB

I ndi cat ix Layer (N / I ndi cation

(N -servi ce-provi der

FIGURE 3.10 Provider-initiated Unconfirmed Service

ties and the underlying service provider; the state information establishes
a context within which the parties interact with the service provider and
communicate with each other. The connectionless model is based on
individually self-contained units of communication (often called “data-
grams”), which are exchanged independently without reference to any
shared state (that is, there is no “connection” between the communicat-
ing parties). In the connection model, each individual unit of communi-
cation is interpreted by reference to the shared state of the connection
(which captures information such as the identity of the communicating
parties, the current status of flow-control variables, the way in which
data have been encoded for transmission, and the sequence numbers of
data units that have not yet been mutually acknowledged). In the con-
nectionless model, each unit of communication carries within it all the
information that each party needs to interpret it, since there is no shared
state to refer to.

AH A The OSI reference model terms connection-oriented and
connectionless, describing virtual circuit and datagram
modes of operation, were coined by Lyman Chapin and John Gurzick during the
production of the first draft of the connectionless addendum to the OSI reference
model on the roof of The Pointe resort in Phoenix, Arizona, in 1981. Sometime
between 1983 and 1987, the connection-oriented “X.25 crowd,” who were not
about to hyphenate the noun connection (to create an adjective) without attach-
ing a similarly demeaning shackle to the rival connectionless, succeeded in
changing the “official” term to connectionless-mode—an injury to English
grammar that at least had the dubious virtue of leaving everyone equally dissat-
isfied. A few reminders of the original terms persist; the standard acronym for

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 53

the “connection-mode network service,” for example, is CONS, not CMNS, and
the title of ISO/IEC 8073 is “Connection-oriented Transport Protocol.”

A common mistake is to assume that either the connection model
or the connectionless model must be used uniformly throughout a net-
work architecture; that is, if one layer is defined using the connection
model, then all the other layers must also use the connection model. In
fact, the two models are complementary: it is appropriate to use the con-
nection model to define a protocol in one layer (e.g., the transport layer)
and the connectionless model to define a protocol in a different layer
(e.g., the network layer), the combination of which can be used to pro-
vide a connection-oriented (transport) service to a higher layer.

The TCP/IP and OSI architectures employ both models in all lay-
ers, with one important exception: in TCP/IP, only the connectionless
model is used to define the services and protocols of the internet layer.
The Internet architecture refers to the two models as simply “connec-
tions” and “datagrams.” The OSI reference model, with its penchant for
“precise” terminology, uses the terms connection-mode and connection-ori-
ented for the connection model and the term connectionless-mode for the
connectionless model.

A H A- In the earliest work on OSI, communication between peer enti-
ties was modeled exclusively in terms of connection-based
interactions, which were de rigueur among the telephony-oriented people® who
dominated early OSI standardization activity. Consequently, the assumption
that a connection is a basic prerequisite for communication in OSI permeated
early drafts of the reference model, and came to be perceived as a dominant and
prerequisite feature of the OSI architecture. This widely held perception caused
many people who were familiar with the use of the connectionless model for
internetworking in TCP/IP and other architectures to dismiss OSI as applicable
only to X.25 and other connection-oriented networks. The pejorative association
of OSI with X.25 has been hard to shake, despite the fact that the connectionless
internetworking model has been fully incorporated into the OSI architecture,

8. The temptation to attach a descriptive collective label to people with perspectives or
beliefs different from one’s own is usually irresistible, albeit deplorable; wherefore, those
who came to OSI from traditional telephony backgrounds have been dubbed “wire
stringers.” Wire stringers believe in connections (there being no such thing as “connection-
less telephony”) and are skeptical of what they call “lossy datagrams”; internetworks built
on the connectionless model were therefore dismissed as “academic toys.” Not surprisingly,
computer nerds are as likely as normal people to succumb to petty variations on the Lee
Atwater syndrome.

54

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

and a complete set of protocols and services to support it has been defined and
standardized.

Communication using a connection proceeds through three distinct
phases:

1. Connection establishment, during which the parties that intend to
communicate negotiate and agree on the terms of their interaction
and perform any necessary “setup” functions (such as the allocation
of buffers, the establishment of underlying communication links,
and the initialization of state variables).

2. Data transfer, during which information is exchanged according to
the rules established during connection establishment.

3. Connection release, during which the context established for commu-
nication is dismantled (buffers freed, underlying links torn down,
state data structures deallocated).

Connection-mode operation is based on the familiar model of a tele-
phone conversation:

1. Dial the phone.
2. Talk to the party at the other end.
3. Hang up.

In contrast, connectionless communication has just one phase of
operation: transmission of a single, self-contained unit of data in a pack-
age that contains all relevant information. It is based on the equally
familiar model of the basic postal mail service: put all necessary informa-
tion (address, return address, postage, “airmail” label, etc.) on the enve-
lope and drop it in the mailbox slot.

Connectionless data transmission has been described disparingly as
“send and pray”; but is more accurately described as “best-effort de-
livery.” A service provider, be it a datagram network or a postal authority,
wouldn’t last long if its users truly believed that packet or mail forwarding
and delivery could only be accomplished through divine intervention.

What about Protocols?

A protocol is a well-defined set of rules for what amounts to a “conversa-
tion” between computer systems. The OSI architecture defines an [N]-
protocol as “a set of rules and formats (semantic and syntactic) which
determines the communication behavior of (N)-entities in the perfor-
mance of (N)-functions” (ISO/IEC 7498: 1993).

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 55

Imagine how a typical telephone call is structured. Fred dials
Wilma's telephone number. Wilma answers with a “Hello?” Fred says,
“Hello, Wilma, this is Fred.” Wilma replies (and implicitly acknowledges
that Fred has indeed reached Wilma) with “Oh, hello, Fred.” This is
more or less the equivalent of a connection establishment. Fred and
Wilma exchange pleasantries, Fred tells Wilma he’ll be late for dinner,
etc; i.e., they transfer data. They exchange good-byes and hang up, the
equivalent of connection release. In general, the caller intuits a great deal
about the nature of the phone call before actually dialing; most callers
anticipate that they will share a common language with the party called,
it is considered rude or suspicious if one does not identify oneself or say
hello, and most understand that an “uh-huh” or a “yep” is an explicit
acknowledgment that the listening party has heard and understood what
the speaking party has said. Although these semantics of a conversation
are (thankfully) not written in ISO standards, they do constitute an im-
plicit set of rules that people generally adhere to when calling one an-
other, at least in the United States. The same is true for the mail system.
There is a convention applied to identify the sender and intended recipi-
ent of a letter. (Conventions certainly exist to simplify the processing of
mail, but the degrees of latitude that the U.S. Postal Service and PTTs
extend to postal patrons are often nothing shy of remarkable.)

Computers establish connections and send datagrams in much the
same manner, but the semantics and syntactical elements are more rigorous-
ly defined. The normal flow of a computer conversation is a highly struc-
tured sequence of actions. Possible exceptions to the normal flow must be
considered and accommodated by introducing some action to be taken in
response to the exception. And of course, the words exchanged must be
understood by the systems that exchange them. The set of actions that
define an (N)-protocol defines the state machine for the protocol. The words
exchanged between communicating (N)-entities are called (N)-protocol data
units or (N)-PDUs. Since computers must be able to distinguish between
words that convey actions to the bit level of detail, the structure of each (N)-
PDU exchanged is defined for each (N)-protocol. The bits that (N)-protocols
interpret to determine what actions to take are collectively called (N)-proto-
col-control-information, or (N)-PCI. The data that an (N)-service-provider
moves from one (N)-service-user to another are called (N)-user-data.

A generic illustration of the relationships among many of these
terms is provided in Figure 3.11, and a concrete example is provided in
Figure 3.12. Note that the terminology is different in the Internet archi-
tecture; in fact, it is different for each layer. Figure 3.13 illustrates that the
same principles can be applied.

56 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

(N+1)-PC (N#1) - user - dat a
Layer (N+1) 1 (N-sap
Layer (N
(N)-service-data-unit
(N PC

T~

(N-PC (N)-user-data

FIGURE 3.11 Relationships among Protocol and Service Terminology

| Transport PCI| Transport user dat

Transport | ayer J\
Net wor k | ayer T

Net wor k servi ce dat a un

T~

| Net wor k PCl | Net wor k user da|

Net wor k PCl

FIGURE 3.12 Protocol and Service Terminology: A Concrete Example

Tr anspor t Segnent headenl Data |

Packet headel\ \ /

Packet header| Data |

I nt er net

Frane header \ \ /

| Fr anme header | Data|

Et her net

FIGURE 3.13 Terminology of the Internet Architecture

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 57

Protocol Headers and User Data

A more familiar term for (N)-protocol-control-information is protocol
header. As one progresses iteratively down the layered architecture, the
formal “rules of thumb” for the association of protocol headers with user
data are:

+ The (N)-user-data to be transmitted / transferred are prepended
with (N)-PCI, forming an (N)-PDU.

» One or more (N)-PDUs are passed across an (N)-SAP as one of a set
of service parameters that comprise an (N)-SDU, called (N)-service-
user-data.

» The (N)-service-user-data themselves are prepended with (N-1)-
PCI, forming one or more (N-1)-PDUs.

All of which basically says that at each layer, in order to exchange
user data, a protocol is operated. To convey the rules of the protocol
from sender to receiver, PCI or header information is attached to the user
data to describe them, distinguish them from other data being
exchanged, and tell the receiver what to do with them. The header infor-
mation is meaningful only to the peers of a given layer, so when the combi-
nation of header and data is passed down to an adjacent, lower layer, it is
treated like one lump of user data. Entities at the lower layer also have a
job to do and rules to follow, so the process continues until you get to the
lowest layer, where electrons follow nature’s course (see Figure 3.14).

| ApplicationPO] Honest-to-goodness user de|

Appli cationl ayer

S Ad
| Presentation PC‘ Presentati onuser d |

Presentationl ayer

i Y
| SessionPO [Session user da|

Sessi onl ayer

A L
[Transport Pa [Transport user dg

Transport | ayer

N \J
[Network PGl | Network user da

Net wor k | ayer

A
| Datalink PCl |Data—|inkuser dall

Dat a- | i nkl ayer

w Y
Physi cal PQ | Physi cal user da|

Physi cal | ayer

FIGURE 3.14 Separating PCI from User Data

58

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

There are certainly those who would conclude that the developers
of OSI were a bit too obsessed with protocol control information, and
wry comments made during OSI standards meetings, such as “Remem-
ber, we're in the header business, not the data business . . . ,” provide
anecdotal substantiation of this claim. OSI is by no means fit and trim.
The expectation is that feature for feature, OSI brings enough that is new
and helpful toward the goal of open distributed processing to encourage
its development and use.

Relating Service to Protocol

The relationship between a service and a protocol is straightforward: for
every primitive action, there is a related set of protocol exchanges that
enable the service provider to accomplish what it has been directed to do
by its service users (or to notify its service users of exception situations
that arise during the provision of service). This relationship is illustrated
in Figure 3.15.

Note that for certain service primitives, there may be no explicit
exchange of (N)-PDUs between the (N)-entities that comprise the (N)-ser-
vice-provider. In this situation, the service primitive exchange models a
local action taken by a service user or the service provider; e.g., passing
locally significant parameters. For other service primitives, several
exchanges of (N)-PDUs might follow the issuance of one primitive re-
quest before the associated indication is generated. In the data transfer
phase of the transport layer, for example, a transport PDU containing
transport user data is sent by the transport entity serving A to the trans-

(N -service (N-service
user (N) - SAPs user

/J\A Layer (N+1)

_——

(N - servi ce-provi det

(N-entity (N-entity

FIGURE 3.15 Relating Service to Protocol

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 59

port entity serving B as a result of the issuance of a T DATA.request
primitive by transport user A. A transport PDU containing an explicit
acknowledgment of receipt of those data is returned by the transport
entity serving user B prior to the issuance of the T-DATA.indication
primitive to user B.

Time-Sequence Diagrams

A second model applied nearly as often in OSI standards as the queue
model is the time-sequence diagram. The time-sequence diagram again
attempts to represent the interaction of service users and a service
provider but adds the dimension of time. Compare the time-sequence
diagram in Figure 3.16 to the queue model example in Figure 3.7.

The time-sequence diagram is actually more powerful than the
queue model when extended to illustrate both protocol exchange and
service primitive interaction, as shown in Figure 3.17.

This extension does not appear in (m)any OSI standards but is used
extensively in this book because it is effective in demonstrating the order
in which things occur.

(N) - CONNECT. request

/

(N) - CONNECT. i ndi cati ¢

\ (N) - CONNECT. responst

/

A

v (N) - CONNECT. confirmn

FIGURE 3.16 Time-Sequence Diagram

60 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

(N) - CONNECT. reques

T (N-PDU | —»

(N) - CONNECT. i ndi cat i

m<g — 4

(N) - CONNECT. respons

“— | (N-PDU| +— e

-

I
Y(N) - CONNECT. confir

FIGURE 3.17 Extended Time-Sequence Diagram

A Final Fling with OSI Fundamentals

Applications typically deal with arbitrary-length octet streams, and infor-
mation exchanged between applications ranges from single keystrokes to
multimegabyte images. Transmission media used in networking today
vary widely in the maximum transmission unit size that can be accommo-
dated with tolerable and detectable loss, from several hundred to several
thousand octets. Computer bus technologies have similar physical limita-
tions but can handle tens of thousands, even millions of octets. Thus,
when the octet streams exchanged between applications are physically
larger than an offered maximum transmission unit size, functions must
be present to chop up the stream into small pieces and then put the pieces
back together again. Segmentation is the process of breaking an (N)-ser-
vice-data-unit into several (N)-protocol-data-units; reassembly is the pro-
cess of recombining the (N)-PDUs into an (N)-SDU (see Figure 3.18).
Sometimes, it is useful to clump together small pieces of informa-

(N) - sbu (N)-sbu

DR N

(N-PDU| | (N-PDU [| (N-PDU (N - PDU (N-PDU [| (N -PDU

FIGURE 3.18 Segmentation and Reassembly

CONCEPTS AND TERMINOLOGY OF OPEN SYSTEMS 61

tion and transmit them in one swell foop. Two forms of this processing
exist in OSIL. If the combining process occurs across two adjacent layers,
the terms concatenation and separation apply. Concatenation is the process
of combining several (N)-PDUs into one (N-1)-SDU; separation is the
reverse function of concatenation (see Figure 3.19). If the combining
process occurs within a layer, the terms blocking and unblocking apply.
Blocking is the process of combining several (N)-SDUs into a single (N)-
PDU; unblocking is the reverse function (see Figure 3.20).

A similar formal terminology is defined for connections. Multiplex-
ing is the process of supporting several (N)-connections using a single
(N-1) connection or (N-1)-association; demultiplexing is the reverse func-
tion. Correspondingly, splitting is the process of using several (N-1)-con-
nections to support a single (N)-connection, with recombining being the
reverse function. These are much harder to draw, so this is left as an
exercise for readers.

(N) - PDU (N) - PDU (N-PDU [|(N)-PDU (N) - PDU (N) - PDU

NN Y

(N-1) - SDU (N-1) - SDU

FIGURE 3.19 Concatenation and Separation

(N-SDU | | (N-SDU | | (N-SDU | | (N)-SDU | | (N)-SDU | | (N - SDU

N NS

(N - PDU (N - PDU

FIGURE 3.20 Blocking and Unblocking

Conclusion

This chapter has provided an overview of the formal methodology used
to describe OSI, and has compared this to the accumulated folklore that
describes the Internet architecture. The authors observed that many
architectural “fundamentals” are common to both the OSI and Internet
architectures and that it is in the application of these fundamentals that

62

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

the architectures often diverge. This chapter has also identified the termi-
nology readers will most frequently encounter in ISO/IEC, CCITT, and
Internet standards, first defining terms in the context of their native
architectures and then relating the formal and often impenetrable OSI
terms to their more commonly encountered Internet counterparts.

The ISO reference model provides a nearly complete description of
OSI architecture and terminology. To obtain a complete description of
Internet architecture and terminology, readers must “trawl” the RFC
directories. Two noteworthy sources for information on this subject are
Perspective on the ARPANET Reference Model (RFC 871) and Hitchhikers
Guide to the Internet (REC 1118).

THE LANGUAGES OF
OPEN SYSTEMS

Introduction

Traditionally, data exchanged between applications across networks have
been treated as arbitrarily long strings of “n-bit” bytes (typically, in
TCP/IP and OSI, n = 8; hence, the term octet is used throughout). Appli-
cations did not distinguish how data were represented as an end (user)
form from the way they were transferred. This was (and remains) especial-
ly true for the Internet application protocols, where the support of ASCII
as the principal character set for providing human-to-terminal interfaces
evolved in such a fashion that ASCII became the de facto programming lan-
guage used for defining commands and replies (protocols) for computer-
to-computer applications such as electronic mail and file transfer.

Parallel to the development of the OSI protocols, a set of nonpropri-
etary languages has been developed and standardized for open systems
to accommodate data representation (“abstract syntax notation”) and a
corresponding encoding for data transfer (“transfer syntax”). They pro-
vide a universal language for network application programming that
enables applications to exchange values of data without losing the
semantics of those data (how they are structured, what types of data are
present in a complex data structure, how long the structure is). These
languages are covered in some detail in this chapter, as they illuminate a
number of differences in the approaches that have been applied to open
systems networking by the OSI and TCP/IP architectures. Readers will
also note that the languages ostensibly created for OSI have been applied
to more recently developed Internet applications, most notably in the
area of network management.

63

64

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Equally important to the study of languages are the practices of
naming and addressing; the definition and representation of names are
discussed in this chapter, while the details of the overall naming and
addressing strategies of OSI and TCP/IP are described in Chapter 5. A
subpractice of naming—protocol identification (“protocol IDs”)—is
described in chapters in which this practice is relevant.

“Open” Languages—Breaking Language Barriers

A computer vendor promoting a proprietary network architecture based
on its own products can define and use whatever terms it likes, name
things without worrying about conflicts or ambiguity, and document its
work using the descriptive notations and syntaxes that are most conve-
nient for its technical writers and customer-training people. When you
own the show, you can make the rules, and anyone who wants to partici-
pate has to learn to speak your language. The architectural “language
barrier” is a powerful argument for network homogeneity—one that
many computer vendors have used to effectively exclude their competi-
tors” products from participation in networks based on their proprietary
architecture. Homogeneity, of course, is precisely the prison from which
the open systems networking concept promises to release the builders
and users of networks. In order to do so, it must define and use terminol-
ogy, naming schemes, and descriptive techniques—Ilanguages—that are
universally understood.

A A It is hard to overemphasize the importance of languages in the
development of open systems. During a meeting in 1988 of the
ISO/IEC standards committee concerned with network-layer standards
(ISOJIEC JTC 1/SC 6/WG 2), the editor for one of the OSI routing protocol
standards, Dave Oran, was engaged in a discussion with another delegate about
the relationship between level-1 and level-2 intradomain routing. Across the
table, three Japanese delegates were following the discussion intently with the
help of a Japanese-English dictionary. Repeatedly, Dave attempted to make what
seemed to him an obvious point; the other delegate continued to disagree with
equal resolve. After several iterations, it suddenly dawned on Dave that the
other delegate’s understanding of the situation was radically different from what
he had assumed, at which point he sat back and said, “Well, if that’s what you
mean, then we're really in deep sneakers!” During the brief silence that fol-
lowed, one could hear the pages flipping in the dictionary as the Japanese dele-

THE LANGUAGES OF OPEN SYSTEMS 65

gates searched for the word sneakers; then a buzz of whispered consultation
among the three in Japanese and more page flipping to confirm that they had
indeed found the correct definition of sneakers. Finally, the head delegate
turned to Dave and, with an expression of intense consternation, asked, “Excuse
me, Mr. Editor, but please explain deep sneakers.”

The work of all the major international standards organizations, including
ISO and CCITT, is conducted almost exclusively in English; non—English-
speaking delegates are expected to either learn to cope in “English-as-a-second-
language” mode or provide their own translations of documents (a daunting
prospect, considering the enormous amount of documentation that attends even
the simplest standardization effort). The result is to give a significant practical
advantage to native English speakers —and fluent non-native English speakers —
in the formal standards-development process. In effect, ISO and CCITT have
adopted English as the “standard” language for standards development, with a
significant penalty for noncompliance.

Data Representation

Five thousand years ago, the Sumerians, Babylonians, and Egyptians
encountered a problem conducting commerce in ancient Mesopotamia:
although they generally agreed on the representation of simple numbers
(1, 2, and 3) as recognizably similar stroke or cuneiform numerals, they
did not agree on the representation of larger numbers and did not (origi-
nally) agree on syntactic markers for place value or the way in which
graphic symbols for basic units (such as 10 and 60) should be composed
to represent a numerical sum (such as the value “80” represented by the
composition of symbols for 60 + 10 + 10). In the years since then, the
problem of unambiguously representing numerical and non-numerical
data has grown steadily worse, as the number of things demanding
unambiguous representation has kept pace with the increasing complexi-
ty of social and economic intercourse. The absolute literal-mindedness of
the computer turned this problem into a genuine nightmare, but it took
networking to turn the problem into a nightmare of global proportions.
Although we have introduced a formal language and grammar—
mathematics—the general issue of dealing with numbers has changed
little since the time of ancient Mesopotamia. Even those who have had
little formal education in mathematics understand the notion of a whole
number or an integer—no fractional parts, positives and negatives, re-
member? Someone says “integer,” and we think {...,-2,-1,0,1,2,.. .}

66

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

517 is an integer, 67,190 is an integer, and Avogadro’s number! is an inte-
ger. We can pretty much grasp this without advanced degrees. The
notion of integer in this context is abstract.

Generally speaking, programming languages such as C and Pascal
have a model of “integer” that is less abstract than the pure number-theory
concept of “integer” but more abstract than the way in which a particular
operating system stores things that are labeled “integers” into containers
(memory locations). Consider that when a mathematician says “integer,”
she is dealing with the entire unconstrained concept of integer (abstract);
but when a programmer says “integer” to the UNIX 4.2bsd C compiler by
declaring a variable to be of type short, she gets a signed 15-bit container
capable of expressing “integer” values in the range -32,678 through
32,767, and if she declares the variable to be of type unsi gned | ong, she
gets a 32-bit container capable of expressing “integer” values in the range
0 through 232 — 1. These represent a more concrete syntax of integer—i.e.,
one that is semantically bound to the machine and operating system
architecture on which the C program is compiled. And finally, when the
C compiler generates machine-language instructions for a particular com-
puter, the concept of “integer” is not even present—there is only the con-
cept of binary numbers (a concrete representation) constrained to fit into
containers of a certain size.

As a rule, when people discuss numbers, they don’t think of “con-
tainers” for integers. Computers, and folks who program them, do (a
preoccupation inherited in part from times when memory was a scarce
and precious resource, and by today’s standards, outrageously expen-
sive). Now, containers have built-in limitations on ranges of numbers; for
example, encoded in hexadecimal, the value “517” requires a 2-octet con-
tainer; the value “67,190” requires 3 octets; and the value of Avogadro’s
number requires many. By and large, folks who program computers don’t
expect ranges of values as broad as Avogadro’s number when they define
data constructs in programming languages like C and Pascal as part of the
process of writing applications. Typically, they define containers that
appear to satisfy near- and modestly long-term needs. This is true for
protocols as well (protocol headers are, after all, merely another form of
data structure). A version field of a protocol doesn’t appear to require
more than an octet; heaven forbid we ever reach 255 versions of any sin-
gle protocol and require yet another octet to encode version 256! On the

1. The number of atoms in a mole—the amount of any substance whose weight in
grams is numerically equal to its atomic or molecular weight. Avogadro’s number is 6.02 X
10%.

THE LANGUAGES OF OPEN SYSTEMS 67

other hand, a 16-bit container for the window-size field of TCP, which
allowed for a 65,535-octet window, and the 32-bit sequence-number field
seemingly satisfied long-term needs in the 1970s; with multimegabit,
fiber “data pipes,” these containers are now generally regarded as too
small.?

There is another complication when dealing with the representa-
tion of numbers in computers and programming languages: even within
the context of the same programming language, different machine archi-
tectures may interpret a data structure in an entirely different manner.
Take the i nt example. Compiling the same C program containing i nt
declarations on two different machines may produce two different
results: on a DEC PDP-11, an i nt without qualification is 16 bits, where-
as on a VAX 11/780, an i nt without qualification is 32 bits, effectively
begging the question of whether either interpretation matches the pro-
grammet’s intent.

Of course, such problems extend beyond the world of whole num-
bers; only some of the data we represent in computers are integers. The
variation among machine architectures in their representation of more
complicated data types—real numbers, complex numbers, characters,
graphic strings—is even worse. This introduces yet another issue: how to
preserve the semantics of information as well as the value when it is
exchanged between two computers.

All of these factors make for pretty messy networking; clearly,
there can be no networking of open systems without a standardized,
machine-independent language in which it is possible to represent basic
information elements in such a way that (1) the information can be inter-
preted unambiguously in any context; (2) the values of data structures
can be, in principle, unbounded; and (3) the information can be con-
veyed between computer systems without loss of semantics.

OSI captures the meaning (semantics) of data exchanged between
open systems (the abstract syntax) independently from the specification
and internal representation of that data in a computer (the concrete
syntax) and the bit patterns used to transmit the data structure from one
computer to another (the transfer syntax). The separation of abstract from

2. In RFC 1323, TCP Extensions for High Performance, Jacobson, Braden, and Borman
discuss the problem of dealing with “long delay paths”—links with high bandwidth X
delay products; over such links (e.g., SONET OC-3C [155 Mbps] and future gigabit
transcontinental U.S. fiber links), the 32-bit sequence number can “wrap” dangerously
close to or faster than the 2-minute maximum segment limit assumed by TCP, and the 16-
bit window size, which limits the effective bandwidth to 216/RTT (round-trip time) is insuf-
ficient to “fill the pipe.” (Here, the U.S. transcontinental delay, approximately 60 millisec-
onds, represents a hard-and-fast lower bound on RTT, which cannot be defied.)

68

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

concrete and transfer syntax is significant in the sense that data can be
represented without concern for the container size for the data or the
manner in which they are recorded in any given computer.

Abstract Syntax Notation

Abstract Syntax Notation One (ASN.1 ISO/IEC 8824: 1987, which is equiva-
lent to CCITT Recommendation X.208) is arguably the most widely accepted
language for the representation of data for open systems networking.
ASN.1 was originally developed as part of the work on OSI upper-layer
standards to serve as a uniform canonical representation of any data type
(both predefined, or standardized, data types and user-defined data types),
so that objects in the OSI environment—protocol headers, electronic-mail
message headers and bodies, directory entries, management information,
and virtual filestores—might be conveyed from one system to another in a
form that could be understood without reference (adherence) to any specif-
ic machine or operating system architecture. ASN.1 has since been adopted
as the specification language of choice by people working in areas other
than OS], including TCP/IP, despite the fact that it is frequently criticized
as expensive, in terms of processor cycles, to perform the transformation
between a system’s native (hardware- and operating system-specific) rep-
resentation of data and ASN.1.

Readers who are familiar with the terminology of database manage-
ment will recognize ASN.1 as a data-description language. 1ISO/IEC 8824
defines the language itself and the many predefined data types that it stan-
dardizes. A companion standard, ISO/IEC 8825: 1987 (CCITT Recommen-
dation X.209), defines basic encoding rules (BER) for encoding the abstract
data types of ASN.1 as actual bit streams that are exchanged by open sys-
tems. Although the standards do not require the exclusive use of the ISO
8825 basic encoding rules to encode ASN.1, in practice almost every encod-
ing of ASN.1 is specified according to the basic encoding rules.

As a general-purpose data-description language, ASN.1 can be used
in many different ways. Its original use, especially in its earliest incarna-
tion as CCITT X.409-1984, was to specify the contents of the headers of
the OSI Message Handling System and upper-layer protocols; ASN.1
descriptions are used to specify protocol data units, to define objects that
can be used to manage network resources, and to define objects and
object attributes that can be registered and entered into a global database
or directory. ASN.1 offers the equivalent of programming tools of gram-
mar. Using ASN.1, one can construct arbitrarily complex data structures

THE LANGUAGES OF OPEN SYSTEMS 69

and retain the semantics of these data structures across many and
diverse computer (operating) systems. One can think of protocol data
units encoded in ASN.1 as verbs (they request actions such as get, set,
modify, read, open, close, search, and initialize) and their objects as
nouns—one “gets” the value of a management object, for example, or
“reads” an attribute from a directory entry. There is even a means of
assigning proper names—object identifiers.

ASN.1 Data Types and Tags

Like many programming languages, ASN.1 provides the means to iden-
tify the type of data structure. The data types that are predefined by
ISO/IEC 8824 cover most of those types that are required for the specifi-
cation of protocols (see Table 4.1).

In ASN.1, data are typed as either simple or structured. Simple data
types are rather intuitive; they are data types that are defined by the set
of values that may be specified for that type, for example:

« A BOOLEAN has two distinguished values (“true” and “false”).
« An INTEGER may be assigned any of the set of positive and nega-
tive whole numbers.

TABLE 4.1 ASN.1 Data Types

Number Number
(Tag) Type (Tag) Type

1 BOOLEAN 17 SET, SET OF
2 INTEGER 18 NumericString
3 BITSTRING 19 PrintableString
4 OCTETSTRING 20 TeletexString (T615tring)
5 NULL 21 VideotexString
6 OBJECT IDENTIFIER 22 IA5String
7 ObjectDescriptor 23 UTCTime
8 EXTERNAL 24 GeneralizedTime
9 REAL 25 GraphicsString
10 ENUMERATED 26 VisibleString
11 CHOICE 27 GeneralString

12-15 Reserved for Addenda
16 SEQUENCE, SEQUENCE OF 28 CharacterString

70

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

« A REAL may be assigned any of the members of the set of real
numbers—i.e., a number that can be stored in floating-point proces-
sors and represented by the general formula mantissa X basecxponent,

» BITSTRING and OCTETSTRING may be composed of an ordered
sequence of 0 or more bits and octets, respectively (and similarly for
other character-string types—e.g., NumericString, Printable-String).

» The ever-interesting NULL may be assigned the singular value
“null.”

« An ENUMERATED type is one for which a list of values is identi-
fied as part of the type notation.

Structured data types are constructed from the simple data types.
The availability of so many simple types alone provides for a wealth of
combinatorial possibilities. Commonly used structured types are:

e SET, a fixed, unordered list of distinct types, some of which may be
optional.

« SET OF, an unordered list of zero or more of the same type.

» SEQUENCE, a fixed, ordered list of distinct types.

« SEQUENCE OF, an ordered list of zero or more of the same type.

» CHOICE, like SET, a fixed, unordered list of distinct types, but in
which any instance of a CHOICE takes the value of one of the com-
ponent types.

+ The nefarious ANY, a CHOICE type bounded not by a list of dis-
tinct types but by anything that can be defined using ASN.1, which
is often used to indicate “I dunno” or “for further study”.

Figure 4.1 provides examples of simple and structured data types.

The OBJECT IDENTIFIER data type serves as the basis for a gener-
al-purpose naming scheme that can be used to identify anything that can
usefully be represented in an open systems architecture as an “object.”
As one might expect, there are a great many “things” in a network that can
usefully be modeled as objects (borrowing at least some of the information-
theoretical “object” model that has been used in, for example, object-oriented
programming languages). Object identifiers (OIDs) serve as a uniform way
to refer unambiguously to any of these “things” (this is examined more
closely in Chapter 5).

Each data type is assigned a unique numeric tag for unambiguous
identification within the domain of types. These are intended mainly for
machine use, and they provide the data-stream identification of a data
type. There are four classes of tags. The UNIVERSAL tags are defined in
ISO/IEC 8824 and shown in Table 4.1. Tags that are assigned in other
OSI standards—e.g., tags that identify protocol data units of applications

THE LANGUAGES OF OPEN SYSTEMS 71

br ai nDamaged BOOLEAN

nunber O Enpl oyees INTEGER -- one typically hires integral nunbers of enployees

avogadr osNunber REAL { 602, 10, 23}

-- value of Avogadro’s nunber is 6.02 x 102
Bl TSTRI NG

G3NonBasi cParans ::= BI TSTRI NG {
twoDi mensi onal (8),
fineResol ution(9),
unl i m t edLengt h(20),
b4Lengt h(21),
a3wWdth(22),
b4W dt h(23),
unconpressed(30) } -—from CCITT X 411-1984

UVPDU ;= OCTETSTRI NG -- fromCCTT X 411-1984
-- no enunerated val ues, can be any length

ENUMERATED { pride(1l), envy(2), gluttony(3), avarice(4),
lust(5), sloth(6), wath(7) }
-- corresponds to seven |layers of OSl

digitizedVoi ce

sevenDeadl ySi ns

nessageBody ;.= SEQUENCE OF BodyPart
-- every elenment of “Body” is of type nmessageBodyPart, defined as

foll ows:
nessageBodyPart ;1= CHO CE {

[0] IMPLICIT asciiText, -- an | A5STRI NG

[1] IMPLICIT telex, -- an OCTETSTRI NG

[2] IMPLICIT voi ce, -- a BITSTRI NG

[3] IMPLICIT G3Facsimile, -- a SEQUENCE

[4] IMPLICIT tel etex, -- an OCTETSTRI NG

[5] IMPLICIT graphicallmage } -- a BITSTRI NG
-- the use of the keyword IMPLICIT indicates that the tag
-- of the tagged types in the CHO CE need not be
-- encoded when data type is transferred; results in mnimum
-- transfer of octets without |oss of semantics

Tel et exNonBasi cParanms ::= SET {
graphi cCharacterSets [0] IMPLICIT T61Stri ng OPTI ONAL,
control CharacterSets [1] IMPLICIT T61Stri ng OPTI ONAL,
pageFormats [2] | MPLICI T OCTETSTRI NG OPTI ONAL,
m sTerm nal Capabilities [3] IMPLICIT T61String
OPTI ONAL,
privateUse [4] | MPLICIT OCTETSTRI NG OPTI ONAL }
-- OPTIONAL indicates that there is no constraint on the presence or absence of the ele-
nent type

FIGURE 4.1 Examples of ASN.1 Data Type Definitions

such as the X.500 Directory or the X.400 Message Handling System—are
assigned APPLICATION-specific tags. Tags that have context within a

72

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

type (that is, within an already tagged type)—e.g., members of a set, ele-
ments of “fields” of a protocol data unit—are as-signed CONTEXT-SPE-
CIFIC tags. Finally, ASN.1 has provisions for organizations and countries
to define additional data types; types of this origin are distinguished
from others of like origin by PRIVATE tags.

Modules

A set or collection of ASN.1-related descriptions is called a module. A
module of ASN.1 statements can be compared to a source file from a
library of files that are included in a C or Pascal program. Rather than
labor through the fairly intuitive syntax of a module, a fragment of an
ASN.1 module is illustrated in Figure 4.2 (the keywords and relevant ele-
ments of the module definition are in boldface type).

Note that like other programming languages, ASN.1 permits the
import and export of modules of ASN.1 (absent in this example). Thus, if
another application service would find it useful to import the FTAM defi-

| SGB571- FTAM DEFIN TIONS :: =

BEA N
PDU ::= CHOCE

InitializePDU ::= CHA CE

FI'N Tl ALI ZEr equest :

InitializePDU, FilePDU, BulkdataPDU}

[APPLI CATION O] IMPLIA T FI N TI ALI ZEr equest ,
] IMPLIAT FI N TIALI ZEr esponse,

] IMPLIC T FTERM NATEr equest ,

] | MPLI O T FTERM NATEr esponse,

] IMPLIA T FUABORTr equest ,

[5] IMPLICAT FPABCRTr esponse }

1= SE

protocol 1d[0] | NTEGER { i SOFTAMO) },

versi onNunber[1] IMPLIC T SEQUENCE { najor | NTEGER

m nor | NTEGER },

serviceType[2] INTEGER { reliable (0), user correctable
(1)}

serviced ass[3] INTEGER { transfer (0), access (1),
nmanagenent (2) }

functional Units[4] BITSTRNG{ read (0), wite (1),

fil eAccess (2),

-- definitions continue .

FI'N Tl ALl ZEr esponse :

"= SEQUENCE .

-- definitions continue .

END

Source: ISO 8571, “File Transfer, Access, and Management” (1988).

FIGURE 4.2 Example of an ASN.1 Module

THE LANGUAGES OF OPEN SYSTEMS 73

nitions, it could do so rather than defining these same ASN.1 types
again.

Note that in addition to a module reference or name, the DE-
SCRIPTION statement may include an object identifier to provide a glob-
ally unique identifier for this module. (Object identifiers are rather
unique ASN.1 simple types that provide a universal identification mech-
anism and are covered under the general rubric of naming and address-
ing; see Chapter 5.)

Transfer Syntax—Basic Encoding Rules (BER) for ASN.1

Constructing the bit-stream representation of the number 255 is a rela-
tively simple task—eight binary 1s, and you don’t even have to worry
about the order of bit transmission. It is quite another issue to indicate
along with this bit-stream representation whether the originator of these
eight binary 1s intended that they be interpreted as the integer 255 or 1
octet of a much larger integer or the “true” value of a BOOLEAN data
type or the mantissa of a real number. To preserve semantics of a data
type, to accommodate values of indefinite length, and to accommodate
the transmission of complex data structures in which component data
types may be present or absent (OPTIONAL), encoding and transmitting
the value are simply not enough.

The bit patterns used to transmit ASN.1-encoded data types from
one computer to another—the transfer syntax—are defined in ISO/IEC
8825: 1987, Specification of Basic Encoding Rules for Abstract Syntax Notation
One (ASN.1). There are three components to an encoding: the identifier
or tag, the length, and the contents or value; the term TLV encoding is
derived from the names of the fields of encodings (Rose 1990).

To say that the basic encoding rules are arcane is an understate-
ment. Like so many aspects of OS], the efficiency of BER has been com-
promised by the perceived need for backward compatibility with its
ancestor, CCITT X.409-1984. The identifier octets, which convey the type
class and number (tag), are encoded in one of two manners. Bits 8 and 7
of the initial identifier octet indicate the class—UNIVERSAL (00), APPLI-
CATION (01), CONTEXT-SPECIFIC (10), or PRIVATE (11). Bit 6 identi-
fies whether the data type is primitive (0) or constructed (1). The remain-
ing bits of this octet contain the tag number if the number is in the range
0 < tag number < 31:

74

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Bits 8 and 7 Bit 6 Bits 5,4, 3,2, and 1

Class Primitive / constructed Tag number

For example, the identifier octet of the BOOLEAN “brainDamaged”
from Figure 4.1 should convey the following information: UNIVERSAL,
primitive, tag number 1. It is thus encoded in the following manner:

Bits8 and 7 Bit6 Bits 5,4, 3,2, and 1

00 0 00001

If the tag number exceeds 30, then the tag number field in the initial
identifier octet is populated with the value “31,” indicating “There are
more identifier octets.” Bit 8 of every subsequent octet is reserved as a
flag, where the value “1” is used to indicate “More octets follow,” and
the value “0” indicates “This is the last octet of the tag number, I
promise!” Thus, if an application had a protocol data unit with a tag
number of 32, the identifier octets would look like this:

Initial Identifier Octet Subsequent Octet
Bits8and7 Bit6 Bits5,4,3,2,and1 Bit8 Bits 7-1
01 1 11111 0 0100000

There are two methods for encoding the length octets: using the def-
inite form, 1 or more length octets indicate the length in octets of the value
field. More bit cleverness is used to extend the length octets: here, bit 8 of
the initial octet is reserved as a continuation/termination flag. A single
length octet is used to indicate contents field lengths up to 127 octets (in
such cases, bit 8 of this octet is 0); for contents fields with lengths greater
than 127 octets, bit 8 of the initial octet is set to 1, and bits 7 through 1
indicate the number of subsequent octets in the length octets field. Thus,
if the contents field of a data type is 202, the length octets are encoded as
follows:

Initial Length Octet Subsequent Octet

Bit 8 Bits 7-1 Bits 8-1

1 0000001 11001010

THE LANGUAGES OF OPEN SYSTEMS 75

For the indefinite form, the initial length octet serves as the initial
delimiter of the contents field: bit 8 of this octet is set to 1, bits 7 through
1 to 0—i.e., represented in hexadecimal as 01111111. The contents field
follows this octet and is variable in length. An end-of-contents field fol-
lows the contents field: it is encoded as 2 octets containing binary 0s
(treated as a basic encoding of a UNIVERSAL tag value zero of zero
length).

Do I Really Have to Deal with All This?

Just as programmers are no longer expected to deal directly with low-
level machine languages, protocol implementers are not expected to deal
directly with ASN.1 and certainly not with BER unless they wish to.
Public-domain and commercial ASN.1 compilers are available that ac-
cept a formal ASN.1 specification as input and produce reasonably
machine-independent high-level language code (most commonly C
code) for the programming language data structures that result from
applying the basic encoding rules (or in some cases, any other encoding
rules specified by the user) to the ASN.1 input stream. This permits
implementers to deal with familiar elements of their favorite program-
ming language to process protocol headers and other data items originally
specified using ASN.1.

Running the protocol header specified formally by the ASN.1 state-
ments shown in Figure 4.3 through an ASN.1 compiler might produce
the C data structure shown in Figure 4.4.

This code would typically be incorporated into a program that
would use it to construct outgoing protocol headers and to parse incom-
ing ones. The actual bits transmitted and received would depend on the
values given to the individual elements of the data structure in each
instance.

It is possible to dig much deeper into the world of ASN.1; readers
who are interested in doing so should consult Steedman (1990), which is
entirely concerned with ASN.1. Other fertile but predictably harshly crit-
ical sources for acquiring more knowledge about ASN.1 are Rose (1990,
1991).

76

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

sinpl eDatagram DEFINITIONS :: =

BEG N
PDU 1= SEQUENCE {
protocol I dentifier [O] | NTEGER,
ver si onNunber [1] | NTECER,
sour ceAddress [2] | NTEGER,
desti nati onAddress [3] | NTEGER,
userData [4] QCTETSTRI NG }
END

FIGURE 4.3 simpleDatagram Protocol Header in ASN.1

defi ne naxUser Dat aLength 255
struct _pduStruct _t {

unsi gned | ong protocol | dentifier;

unsi gned | ong ver si onNunber ;

unsi gned | ong sour ceAddr ess;

unsi gned | ong desti nati onAddr ess;
user Dat a char [maxUser Dat alL.engt h]

} pduStruct-t

FIGURE 4.4 simpleDatagram Protocol Header in C

Languages and the TCP/IP Community

Most of the applications written for TCP/IP are written in a program-
ming language and compiled to an executable format suitable to the
machine and operating system on which the application will reside.
Application protocol data units are often plain-text ASCII with specific
guidelines for the interpretation of keywords, “white space,” special
characters, and escape character sequences (see, for example, Internet
mail, discussed in Chapter 8). Although this may not at first seem partic-
ularly elegant, it has the very desirable characteristics of (1) being nearly
universally understood and (2) getting the job done.

Some TCP/IP applications make use of machine-independent data-
definition languages. The popular Network File System (RFC 1094; Sand-
berg 1988) uses External Data Representation (RFC 1014), which, although
admittedly highly optimized for translation to and from UNIX/ C data
representations, is easily ported to operating systems such as MS-DOS.
ASN.1 is used in the definition of the Simple Network Management
Protocol (SNMP; see Chapter 9) and in the definition of managed objects
for the SNMP; and of course, the OSI upper-layers implementations that
run on top of TCP/IP are encoded in ASN.1.

Only a subset of ASN.1 is used to define SNMP. The full comple-

THE LANGUAGES OF OPEN SYSTEMS

77

IfEntry ::=
SEQUENCE {
i f1ndex
| NTEGER,
i f Descr
Di spl ayStri ng,
i f Type
| NTEGER,
ifMu
| NTEGER,

i f Speed --a gauge is an application-specific ASN. 1 data structure in SNW

Gauge, --it is a 32-bit INTECER that can increase or decrease but will not

“wr ap”
i f PhysAddr ess
OCTETSTRI NG
i f Admi nSt at us
I NTECGER,
i f Oper St at us
I NTEGER,
i f Last Change --timeticks is an application-specific ASN.1 data structure in
SNVP

Ti neti cks, --it is an I NTEGER each increnment represents .01 second of tine
iflnCctets -- a counter is an application-specific ASN.1 data structure in

SNVP

Count er, --it is a 32-bit INTEGER that nonotonically increases and “w aps”

i flnUcast Pkts
Counter,

i flnNUcast Pkts
Counter,

i f1nDi scards
Count er,

iflnErrors
Counter,

i f1 nUnknownPr ot os
Counter,

ifQutCctets
Count er,

i f Qut Ucast Pkt s
Count er

i f Qut NUcast Pkt s
Counter,

i fQut Di scards
Count er,

ifQutErrors
Counter,

i fQut QLen
Gauge,

FIGURE 4.5 SNMP Table i f Tabl e in ASN.1

78

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

ment of ASN.1 data types was considered to be burdensome to impose
on computer systems that had roles in life other than performing man-
agement operations. The predominant sentiment in the Internet commu-
nity is that like many OSI efforts, ASN.1 tried to be all things for all peo-
ple, for all time, and the result was something certainly general but too
complex. SNMP uses the simple types INTEGER, OCTETSTRING,
OBJECT IDENTIFIER, and NULL, as well as the structured types
SEQUENCE and SEQUENCE OF (basically, everything you could con-
struct using the standard C programming-language data structures, i nt
and char). The other data types that are needed are emulated using this
reduced set. A BOOLEAN, for example, is represented as an INTEGER
with two values, true and false; relative time is represented as an INTE-
GER as well, with each INTEGER value representing a hundredth of a
second, or a “timetick.” The rest of the ASN.1 types, it is argued, are in-
essential (and expensive) luxuries.

An example of ASN.1 use in the SNMP is shown in Figures 4.5 and
4.6. The SNMP table i f Tabl e was compiled using an ASN.1 compiler;
the compiler creates an “include” file, which contains the C data struc-
ture shown in Figure 4.6.

t ypedef

struct _ifEntry_t {
| ong i fl ndex;
CctetString *i f Descr;
| ong i f Type;
| ong ifMu;
unsi gned | ong i f Speed;
CctetString *i f PhysAddr ess;
| ong i f Adm nSt at us;
| ong i f Qper St at us;
unsi gned | ong i f Last Change;
unsi gned | ong iflnCctets;
unsi gned | ong i fI nUcast Pkt s;
unsi gned | ong i f1 nNUcast Pkt s;
unsi gned | ong i f1nD scards;
unsi gned | ong iflnErrors;
unsi gned | ong i f I nUnknownPr ot os;
unsi gned | ong ifQutCetets;
unsi gned | ong i f Qut Ucast Pkt s;
unsi gned | ong i f Qut NUcast Pkt's;
unsi gned | ong i f Qut Di scards;
unsi gned | ong ifQutErrors;
unsi gned | ong i fQut Qen;
anb *i f Speci fi c;

} ifEntry_t;

FIGURE 4.6 ifTabl e in C, as Generated by an ASN.1 Compiler

THE LANGUAGES OF OPEN SYSTEMS 79

Conclusion

This chapter has described the formal way in which data are represented
in OSI applications and the means by which not only the values of data
but the semantics associated with them are transferred between distrib-
uted applications. The authors have described only enough of ASN.1, the
data-definition language used in the development of OSI application ser-
vices, to enable readers to understand some of the protocol examples
given in the text. Readers interested in the details and intricacies of ASN.1
are encouraged to read Steedman (1990). This chapter has also described
the way data are represented and manipulated by TCP/IP applications
and how ASN.1 is applied in the Internet as well as the OSI community,
but with an economy of data-type definitions (see also RFCs 1155, 1157,
and 1213). And finally, the chapter has introduced the notion of object
identification; in the following chapters, readers will appreciate the
important role that object identifiers play in the open systems “name
game.”

NAMES AND ADDRESSES

John Schoch’s well-known differentiation of names, addresses, and
routes (Schoch 1978) unintentionally spawned widespread misunder-
standing of the role of naming in network architectures. It asserts that
names and addresses are fundamentally different and that routes and
addresses are unrelated. In fact, anything that serves semantically to
identify is, by definition, a name. An address is simply a name with spe-
cial properties: an address is also a name (of a point within a specified
coordinate system), but not all names are addresses. A route is not an
identifier at all, but a specification of a path from one point to another in
a graph that represents the topology of a particular network at a particu-
lar point in time.

To understand the role that they play in open systems networking,
it is not important to recognize a high-level distinction between names in
general and the names of network locations (addresses). In this chapter,
the discussion of “names” applies as well to the special class of names
that are addresses. Routes, since they are not identifiers, are covered else-
where (in Chapter 14). We also discuss the role of registration authorities
in the administration of open system naming schemes and describe the
most important classes of names and addresses (some of which are cov-
ered, in much greater detail, in the chapters that describe the network
components that actually use them).

81

82

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Names

The importance of naming schemes should be intuitively obvious to any-
one who has ever dealt with a large distributed system of any kind (such
as the postal mail system, a motor-vehicle registry, or a computer net-
work). A naming scheme specifies the structure and significance of
names and the way in which a name is allocated (selected from the set—
the “name space”—of all possible names) and assigned (associated with,
or “bound to,” the particular object for which it is the identifier).

A naming scheme may be characterized according to a number of
basic criteria, including:

e Scope: whether a naming scheme is intended to apply globally to an
entire class (or to entire classes) of objects or is intended to be
understood only within and with respect to a particular local con-
text

o User-friendliness: whether a name must be intelligible to and usable
by a human user or is intended only for communication among
“nonhuman” network elements

« Scale: the ability of a naming scheme to accommodate an increase in
both the number and (potentially) the internal complexity of names
as the size of the corresponding system increases

e Permanence: whether the binding of a name to an object is transient
(and whether or not the name may be reassigned to another object
after its association with one object has ended) or persistent (and if
the latter, whether or not the name or some part of it must be regis-
tered with a formal registration authority in order to ensure that it
can be used unambiguously throughout an open system)

The way in which a particular type of name will be used determines
the importance of each of these criteria to the design of an appropriate nam-
ing scheme. For example, a system of names for houses along a street
(“street numbers”) will generally be designed for limited scope (the context
is provided by the street; different houses on different streets may have the
same street number without ambiguity); a high degree of user-friendliness
(since human “users” will be writing these street numbers on envelopes;
they should probably not, for example, start at 5,354,201 or some other large
number); the ability to scale to at least the number of houses that might rea-
sonably be built along the street, coupled with an assignment rule that
leaves enough space between adjacent house numbers to accommodate the
future construction of new houses on side lots; and of course, permanence
(for which the guarantor is often the town’s tax assessor).

NAMES AND ADDRESSES 83

Hierarchy

The most straightforward way to keep track of the names that have been
allocated from a particular name space is simply to enumerate them in a
list, in which each name appears once. If the number of names that have
been allocated is “small enough,”! this is also a perfectly practical way to
keep track of them and to advertise them if necessary (so as to make the
names, and their object bindings, known to potential users); but if the
number grows too large, the cost of maintaining and distributing the
simple enumerated list of names eventually becomes excessive. How-
ever, for a “flat” name space, from which names with no discernible
structure are allocated, there is no alternative: every reference by name
to a set of objects must name every member of the set individually.

If the names associated with a particular name space do have a dis-
cernible structure, however, they can be grouped accordingly. The struc-
ture may be syntactic or semantic, or some combination. In the case of
street numbers, for example, it is common to allocate only odd numbers
to houses along one side of the street and only even numbers to houses
along the other side, which creates a discrimination that is based on a
semantic attribute of the house number. In order to make a statement
about the entire collection of houses on one side of the street, it is not
necessary to enumerate every house number; it is sufficient to refer to
“the houses with odd [or “even,” as the case may be] house numbers.” In
large condominium complexes consisting of more than one building, it is
also common to name individual condominium units by means of a two-
part identifier, the first part of which names the building and the second
part of which names the unit within the building (such as “B-42” for unit
42 in building B). The syntax of the name creates a discrimination that
allows the local fire department, for example, to determine which build-
ing to train its hoses on without individually identifying all the units
contained within that building (all of which, in the case of a building fire,
share a common fate).

The second example illustrates the usefulness of hierarchy as a way
of structuring an address space. In a hierarchically structured name
space, individual names (and the objects to which they are bound) can be
effectively grouped into larger and larger aggregations based on some
property of the objects that is reflected in a corresponding hierarchical
property of the name space. Such a structure, which is commonly repre-
sented by an inverted tree diagram, makes it possible to refer to a collec-

1. “Small enough” is, of course, a subjective measure; what is “small enough” for a
computer’s database-management system may be “too large” by far for a human adminis-
trator with a clipboard.

84

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

OSI Naming
Architecture

tion of objects by giving just the name of the collection (the subset, or
“subtree,” of the structure that contains all the objects that share a com-
mon property of interest) rather than exhaustively naming the individual
elements of the subset.

Although hierarchies are generally established according to criteria
that are related to some property of the named objects—their location
within a network, for example—they may also be established purely for
administrative convenience, without reference to any essential property
of the named objects. It might be convenient, for example, to define a
hierarchy within a hitherto flat name space in order to distribute the job
of allocating and assigning names among several managers, even though
a hierarchically structured name space does not confer any benefit with
respect to dealing with the named objects; in such a case, there is no prac-
tical significance to the fact that the name of an object appears in one part
of the hierarchy or another.

Occasionally, the desire to establish a hierarchical structure based
on the corresponding real-world organization of the named objects col-
lides with an equally strong desire to establish a hierarchical structure
based on the administrative convenience of the registration authority or
authorities responsible for the task of managing the assignment of
names. More often, however, there is a natural relationship between the
way in which objects are organized (the practical hierarchy) and the way
in which their names are most readily managed (the administrative, or
naming, hierarchy).

The difficulty of managing a flat name space increases linearly with
its size. The difficulty of managing a hierarchical name space can be
made to increase at a much slower rate by judicious selection of the hier-
archy. As we will see in the chapters on the network layer (Chapter 13)
and routing (Chapter 14), the selection of an appropriate hierarchy deter-
mines whether or not a network architecture scales well—that is, whether
it supports a network that can continue to grow in size and extent or cre-
ates practical upper bounds on size and extent that inhibit the network’s
growth.

The OSI naming architecture is described in part 3 of the OSI reference
model (ISO/IEC 7498-3: 1989), Naming and Addressing. In the layered
architecture of OS], entities represent the active agents that operate within
a layer to carry out its assigned functions (see Chapter 3); entities are
named by entity titles, or simply fitles. Service access points (SAPs) repre-
sent the logical interfaces between adjacent layers, at which the lower-
layer service is conceptually presented to and received by the upper layer.
Service access points are named by service access point addresses.

NAMES AND ADDRESSES 85

Application
Entity Titles

In principle, each of the seven layers of the OSI reference model
contains named (“titled”) entities, and each of the six layer service
boundaries (there is no application-layer service boundary) is speckled
with addressable service access points. In practice, however, the only
important titles are those associated with entities in the application and
network layers: application entity titles (AE-titles), because they are the
basic unit of identification for OSI applications (the “end users” of an OSI
network), and network entity titles (NETSs), because routing information
is exchanged among network entities independent of any particular data
flow between network service access points. None of the other layers
contains entities that need to refer to each other independent of the ser-
vice access points to which they provide access. The truly important
addresses are the network, or network service access point (NSAP), ad-
dress (which identifies individual hosts connected to the network), and
the subnetwork address (which identifies a point at which any system—
host or router—is logically or physically attached to a real network).

Service access point addresses above the network layer are con-
structed by simply concatenating a selector to the next-lower-layer service
access point address. The selectors are used to accomplish a “fan-out” at
the layer service boundary to (potentially) multiple entities in the layer
above. The presentation address is the culmination of this process of
address composition—it identifies an application entity, which is as far
up the stack as you can go in the OSI architecture. The presentation
address is particularly significant as the point at which the names associ-
ated with applications are coupled to the addresses that are used by
OSI-defined services and protocols (see Chapters 7 and 11). Below the
network layer, the abstract concepts of “service access point” and “ser-
vice access point address” bear only a forced and awkward relevance to
the technology-specific data link and physical components of real net-
works and are best left unexplored.?

Since the ultimate sources and sinks of information in an OSI network
are application entities, every end-user interaction in an OSI environ-

2. This is an excellent example of the benefit of knowing what is and is not important!
The ISO and CCITT committees concerned with data link-layer standards have spent end-
less hours debating the existence and properties of data link addresses without coming to
any satisfying conclusions that apply to the data link service in general (rather than to one
or more data link technologies in particular). This unproductive exercise has been pursued
because the groups involved failed to recognize a very basic point: that the concept of “ser-
vice access point address” is not useful in the context of the data link service (notwith-
standing the reference model mandate that all service boundaries have SAPs and all SAPs
have addresses).

86

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

ment depends, at some point, on the identification of the participating
application entities by their application entity titles, and by implication,
the presentation address associated with that title.

Prior to the development of the X.500-series standards for the OSI
Directory, the syntax of application entity titles was poorly defined.
However, this caused very few problems because, in the absence of a
directory, the early end users of OSI were unlikely to make use of any of
the application-layer features that would have required them to know
what an application entity title was. The ASN.1-encoded, generic form of
application entity title, contained in early drafts of the OSI standard for
registration authorities (ISO/IEC 9834-1: 1991), was both very simple and
not very useful:

AE-Title ::= SEQUENCE {

AP-Titl e,
AE-Qual i fier }

The registration authority standard also defined an all-numeric form
of application entity title, in which the application process title (AP-
Ti t1 e in the ASN.1 definition) part is syntactically an object identifier,
and the application entity qualifier (AE- Qual i fi er) part is an integer:

AP-Title ::= IMPLICIT objectldentifier
AE-Qualifier ::= | NTECER

The agreements reached by ISO/IEC and CCITT on the 1988 (and
subsequent) directory standards (see Chapter 7) included the recognition
of two well-defined forms for the application entity title, one of which is
the object identifier form just shown. The other, much more useful, form
is one in which the application entity title is syntactically equivalent to a
directory distinguished name:

AP-Title ::= RDNSequence
AE-Qualifier ::= RelativeD stingui shedNane

A relative distinguished name sequence (RDNSequence) is just a
sequence of relative distinguished names of entries in the directory infor-
mation tree; in this second form of application entity title, the application
process title contains the relative distinguished names of the directory
entries from the root down to (but not including) the entry that repre-
sents the application entity, and the application entity qualifier adds the
relative distinguished name of the application entity entry itself. This
makes it easy to list an application entity in the directory and to refer to it
by a distinguished name that may be used as a valid title for the applica-
tion entity.

NAMES AND ADDRESSES 87

System Titles

Recognizing that applications—even OSI applications—necessarily
reside in systems, and that people have become accustomed over the
years to thinking about applications as “running on” a particular com-
puter system, the OSI naming scheme defines the concept of system title,
the effect of which is to bring the decomposition of the application entity
title, begun in the previous subsection, even closer to the real world.

The concept of system title is equivalent to the familiar concept of
host name in TCP/IP; it is a permanent identifier for a particular OSI end
system (host), and the identification of applications running on that end
system can be based on it by further decomposing the application pro-
cess title in either its object identifier form or its relative distinguished
name form:

Generic form:

AP-Title ::= SEQUENCE {
SystemTitle,
AP-Qualifier }

Form 1:

SystemTitle ::= RDONSequence

AP-Qualifier ::= RelativeD stingui shedNane
Form 2:

SystemTitle ::= objectldentifier
AP-Qualifier ::= | NTECER

The entire process of application entity title formation can now be
traced back to the registration of system titles, or host names. The distin-
guished name form of an application entity title begins with a high-order
sequence of relative distinguished names registered (implicitly, as a sim-
ple consequence of being entered in the directory information base, or
explicitly) by a system-title registration authority, to which another rela-
tive distinguished name is concatenated to form an application process
title, to which another relative distinguished name is concatenated to
form an application entity title—et voila! A similar process of concatena-
tion of subidentifiers to a base system-title object identifier creates the
object identifier form of an application entity title.

By convention, registration authorities for system titles and appli-
cation process titles require the simultaneous allocation of both forms
(object identifier and relative distinguished name sequence), which
ensures that the values of both forms are (1) interchangeably available
for use (they appear, logically, in the same place in the register) and
(2) protected from allocation as the value of any other title.

88

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TCP/IP Naming
Architecture

The naming architecture of TCP/IP, being less deliberately abstract than
that of OS], is correspondingly simpler. It is entirely captured by the
Domain Name System, which is discussed in Chapter 7.

Addresses

In the context of open systems networking, an address identifies a specif-
ic point in a graph that represents the topology of a particular logical net-
work. That’s pretty general, but in the OSI architecture, the concept of
“address” is even broader, including the identification of points on the
interfaces between the layers of the OSI reference model.

It turns out that the only OSI addresses worth talking about are the
ones that are concerned with network and subnetwork topologies. In the
TCP/IP architecture, which has never been encumbered by addressable
points on its layer interfaces, the interesting addresses are the TCP/IP
equivalents of OSI's network (NSAP) and subnetwork addresses: the IP
(internet) address and the addresses of network interfaces. Both OSI net-
work addresses and IP addresses are best understood in the context of
the network layer and the routing protocols that use them and are thus
discussed in more detail in Chapters 13 and 14. Subnetwork and interface
addresses are inherently technology-specific: no matter how wonderful
and/or pervasive a particular network is, there is always, somewhere,
another (different) network to which it eventually must be connected,
wherefore no subnetwork-specific address is a substitute for an internet-
work address.

Registration Authorities

In order for names to be useful, there must be a way to ensure that the
allocation and assignment of names is unambiguous and that the rela-
tionship between a name and the “thing” it names is maintained in such
a way that users can find out what it is (by “looking it up”). The latter
function is performed by a directory service and is covered in Chapter 7;
the former is performed by a registration authority.’

A registration authority plays two important roles with respect to a

3. It should be pointed out here that the term registration can imply either simple “list-
ing,” in which a name-to-thing relationship is recorded in a list (but about which the listing

NAMES AND ADDRESSES 89

Registration
Authority
Procedures

particular class of names: it administers the name space, managing the
actual allocation of values from the name space and the assignment of
those values to things that are entitled to be identified by a name of that
class; and it maintains a record of the name-to-thing bindings that it has
created. This record of bindings may then be incorporated into a directo-
ry (see Chapter 7). It is important to recognize, however, that registration
and directories are separate systems (although in some cases, as we shall
see in our discussion of the Domain Name System in Chapter 7, they are
inextricably linked). Registration may proceed whether or not there is a
directory in which the registered names are listed. A directory, however,
implies at least an informal or implicit registration authority responsible
for the names that appear in the directory.

In the OSI world, the way in which registration authorities operate is
defined by an international standard, ISO/IEC 9834-1: 1991, which is
(intentionally) identical to CCITT Recommendation X.660. This standard
specifies a tree-structured name-registration hierarchy, within which in-
dividual registration authorities operate, exercising hegemony over that
part of the global name space that is represented by the subtree for
which the authority is the root. The topmost levels of the registration
hierarchy are defined by ISO/IEC 8824 (CCITT X.208) and ISO/IEC
9834-1 (CCITT X.660), which together specify the registration hierarchy
shown in Figure 5.1.

In the world of open systems, there are a great many identifier
types that must be registered in order to ensure that they can be used
unambiguously. In the OSI world, these include:

Document types

Standardized object identifiers

Virtual Terminal profiles and control objects profiles
AP titles and AE titles

Abstract syntaxes

agency makes no assertions of any kind), or ”formal registration,” in which the registering
agency not only records and lists a name-to-thing relationship but also confers “legitimacy”
on it—guaranteeing, for instance, that the name is not bound to any other object or that the
person or organization registering the name has some legal right or entitlement that is
expressed by the fact that the name is registered with the agency. At this time, it is not clear
which model of “registration” applies to the registration authorities that have been and are
being formed in support of open systems networking. It is likely, however, that registration
authorities established by international standards or, within countries, by national govern-
ments or national standards organizations will operate in accordance with the “formal reg-
istration” model but that the directory systems in which name-to-thing bindings are record-
ed for others to “look up” will operate according to the “listing” model.

90

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

The U.S.
Registration
Authority

Transfer syntaxes

Application context identifiers

System titles

Organization identifiers

Administration (public) messaging domain/ private messaging
domain (of X.400 MHS) names for message handling systems

Many of these identifiers are registered statically by the specification of
one or more ISO/IEC and/or CCITT standards or by national standards.
Others are registered dynamically, as necessary, by registration authori-
ties constituted specifically for that purpose.

The American National Standards Institute (ANSI) operates a registration
authority that assigns organization names in two forms: (1) an alphanu-
meric form, which may consist of from 1 to 100 characters chosen from a
specified character set,* and (2) a numeric form, which consists of a posi-

——Recomendation (C

U. S. (310-316)
—Adm ni strati on(I{
caTrT_ | C her countri e

— (0) _
—Question(1
— U S publicdata
net wor ks (3100-31
—Net wor k oper at or (3)—
L Chercountries’
publ i c dat a net wor
—St andar d (0)
| SO' | EC 9834- — U S. (840)
(CATT X 660)™ | | Menber body (2
(1s03166) — |
— 1SO0(1)— L Qher countries

—Regi strationauthority

— OBl net (0004)

Identifiedorganization |
L (1506523) —1 QCsl P (0005)

LU S. DOD(0006)

Country (16)
| Joint 1SO-COITI QO W(0014)
2 L—Q her

Q her

FIGURE 5.1 The OSI Name-Registration Hierarchy

4. The character set is defined as registration number 102, the Teletex Set of Primary

NAMES AND ADDRESSES 91

tive decimal integer greater than or equal to 113,527 and less than 16 mil-
lion. The numeric form may be obtained with or without a corresponding
alphanumeric form, but the alphanumeric form is always accompanied
by (and in the register, associated with) a numeric form.

SATH A Ma.ny people have wfmdered.wh.y ANSI decided to b.egin. t'he
assignment of numeric organization names at the nonintuitive
value “113,527,” which is not, among other things, a power of 2 (or any other
interesting number). Realizing that they had to specify some value as the start-
ing point (and hoping to avoid conferring any special cachet on the recipients of
the first few numbers by starting at, say, “1”), the members of the UL.S. registra-
tion authority committee were about to pick a “logical” number (*1,000,” per-
haps, or “2,048”) when Jack Veenstra, the chairman of the committee, shouted
“113,527!” —which was promptly dubbed the “Veenstra constant” and written
into the registration authority procedures. Later, the members of the committee
arranged for AT&T (Veenstra’s employer) to receive the numeric organization
name “113,527" in Jack’s honor.

An organization name may be used in several different ways to
form unambiguous identifiers. The alphanumeric form is most often
used as the organization name in an electronic-mail address (as, for
example, the value of the “organization” or “organizational unit” ele-
ments of an X.400 originator / recipient address containing “/C = US”; see
Chapter 8). The numeric form may be used as the value of the “organiza-
tion” field in an OSI NSAP address constructed according to ANSI
Standard X3.216-1992 (see Chapter 13) or as part of an object identifier
prefix for constructing unambiguous object identifiers for organization-
specific objects (such as, for example, organization-specific management
information base variables for use with a network management system).
The registration authority does not specify or constrain the way in which
an organization name may be used, nor does it guarantee the legal right
of an organization to actually use the name. Only one guarantee comes
with an organization name obtained from ANSI's registration authority:
that ANSI has not previously assigned the same name to anyone else
and will not do so in the future.

Until recently, the U.S. name-registration authority conducted its
business under the{ iso (1) menber-body (2) us (840) } arc
of the registration hierarchy (see Figure 5.1), registering names for ANSI

Graphic Characters, of the ISO International Register of Character Sets to Be Used with
Escape Sequences, plus the space character.

92

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

standards, private organizations with U.S. national standing, and the
names of U.S. states and “state equivalents.” In 1991, however, changes
in the registration authority procedures standard—adopted as a result of
joint efforts by ISO/IEC and CCITT to align their registration proce-
dures, leading to a single standard (ISO/IEC 9834 | CCITT X.660)—
invalidated this procedure; they required that private organization
names with national standing be registered under the { joi nt-i so-
ccitt (2) country (16) us (840) } arc of the registration hierar-
chy. This had two immediate, significant consequences: organization
names already registered under the { 1 2 840 } arc were suddenly
“homeless,” and policy control over the assignment of organization
names—previously vested solely in ANSI, which owns the{ 1 2 840 }
arc as the U.S. member body in ISO, under the old rules—became the
joint responsibility of ANSI and the U.S. Department of State (which is
the official U.S. representative in the CCITT arena).

The solution to this problem was, fortunately, straightforward;
Figure 5.2 illustrates the way in which the new { 2 16 840 } subtree
will be jointly administered.

The Federal Information Processing Standard 5 (FIPS-5) subtree will
be managed by the existing U.S. government FIPS-5 commission (U.S.
Department of Commerce 1987), which defines the names of “states and
state equivalents” within the United States. Under the old rules, these
names had been “imported” from FIPS-5 directly into the first 100 nu-
meric name slots of the { 1 2 840 } arc; however, since no name
assignments were ever made under these values, they have simply been
abandoned. Under the new rules, the FIPS-5 state names are expected to
be available for use as the values of the st at eOr Provi nce attribute in
relative distinguished names in the X.500 Directory (see Chapter 7).

The existing register of private organization names will move, in-
tact, fromthe{ 1 2 840 } arctothe{ 2 16 840 2 } arc, which will
also be administered by ANSI. This “copy” operation, however, will not
invalidate existing names (such as organization identifiers and applica-

Federal i nformation

processi ng standard 5 (
us. (840~Ec:rgani zations(2)
Country (1 Message handl i ng syst«¢
Joint 1sQ cO 'I'I'(2)—|: G her managenent domai n (3)
Q her

FIGURE5.2 The U.S. Name-Registration Subtree

NAMES AND ADDRESSES 93

tion entity titles) that may already have been constructed using the { 1
2 840 } prefix; in effect, two equivalent prefixes will exist (in perpetu-
ity) for currently registered organization names. New registrations will
be made only under the new { 2 16 840 2 } arc, and organizations
possessed of an “old” registration will be encouraged (but not required)
to construct no new identifiers under the { 1 2 840 } arc but to use
the{ 2 16 840 2 } arcinstead.

The numeric organization names under { 2 16 840 2 } will be
used as values of the “organization” field in the construction of NSAP
addresses with authority and format identifier values of 38 or 39 and an
initial domain identifier value of 840, according to American National
Standard X3.210-1992, just as they were under the old rules (see Chapter
13); this usage is not affected by the switch to a new subtree, since only
the numeric organization name, without the qualifying{ 1 2 840 } or
{ 2 16 840 2 } prefix, is used in the construction of NSAP addresses.

Since the rule change covers only “private organization names with
national standing,” the existing mechanism for registering the names of
American national standards under the { 1 2 840 } arc is unaffected
and will remain in place.

The creation of a new arc for message handling system manage-
ment domain names recognizes the apparently unreconcilable difference
between the general registration of organization names and the registra-
tion of names that will be used as administration messaging domain and
private messaging domain names for X.400 (see Chapter 8). This is
unfortunate, since it means that organization names registered under the
organizations arc—including those names that have already been regis-
tered under the “old rules”—cannot be used as administration messag-
ing domain or private messaging domain names in an X.400 originator/
recipient address unless they are also registered under the new message
handling system management domain arc. The very different require-
ments associated with the registration of organization names that are
intended for use in an X.400 context make this situation unavoidable.

AHE A The designers of the original registration authority for the
United States recognized that their general-purpose registry,
which permitted great flexibility in the formation of an acceptable organization
name (it could consist of up to 100 characters chosen from a very large character
set), could not enforce the constraints that might be applicable to the use for
which a registered name was intended. Message handling system management
domain names, for example, are constrained by CCITT Recommendation X.411
to be no longer than 16 bytes and must be constructed from the “Printable-

94

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

The U.K.
Registration
Authority

The GOSIP
Registration
Authority

String” character set defined by ISO/IEC 8824. They hoped, however, that these
additional constraints could be observed in practice without creating applica-
tion-specific registries for different types of organization name. The difficulties of
doing so, at least in the case of organization names that will be used as MHS
administration or private domain names, have proved to be too great.

The United States is not, of course, the only country with a need to regis-
ter names with national standing under the various arcs of the ISO/IEC
9834 registration hierarchy. ANSI’s counterpart in the United Kingdom,
the British Standards Institute, operates a similar U.K. Registration Au-
thority (UKRA),®> which is governed by British Standard (BS) 7306 (1990).
The U.K. registration authority is more specific than ANSI’s; whereas
ANSI hands out organization names that can be used for a wide variety
of purposes, BSI has elected to assign organization names that can only
be used in the construction of OSI network-layer addresses (see Chapter
13) and in fact the UKRA (see Chapter 13) includes the following specific
disclaimer: “Users of an X.400 service therefore obtain their O/R ad-
dresses through mechanisms provided for that purpose, independently
of any allocations that may be made under this standard.”

In the United States, ANSI operates the U.S. registration authority (in
conjunction with the Department of State with respect to some of the arcs
below { 2 16 840 }; see the subsection entitled “The U.S. Registration
Authority,” earlier in the chapter), but it is not the only organization regis-
tering “national standing” identifiers. The U.S. General Services Admin-
istration, acting for the National Institute of Standards and Technology
(NIST), administers a GOSIP registration authority that assigns identi-
fiers for use in two specific contexts:

1. GSA will provide U.S. government agencies with strings (all of which
begin with the characters “GOV+") that can be used in X.400 mail
addresses as part of constructed private management domain or orga-
nization names, under a delegation from ANSI to NIST that is regis-
tered as the arc{ iso (1) nenber-body (2) us (840) gov (101) }.

2. GSA will provide, to anyone who asks, a numeric value that can be
used in the administrative authority identifier field of U.S. GOSIP
version 2 NSAP addresses (see Chapter 13), under a delegation of
authority from the ISO 6523 part of ISO’s subtree that is registered as
thearc{ iso (1) identified-organization (3) NST (5) }.

5. In fact, BSI has delegated the responsibility for actually operating the U.K.
Registration Authority to the Electronics and Business Equipment Association.

NAMES AND ADDRESSES 95

The Internet
Assigned
Numbers
Authority

Fortunately, these identifiers are in every case readily distinguish-
able, in context, from identifiers registered with ANSI under other arcs
of the registration hierarchy. ANSI has agreed not to allocate message
handling system management domain names beginning with “GOV+”
underits{ 2 16 840 3 } arc, and the administrative authority identi-
fier values allocated by GSA, although they are semantically equivalent
to the organization field values allocated by ANSI, can appear only in
NSAP addresses that follow the GOSIP version 2 format (with AFI = 47
and IDI = 0005), whereas the org values can appear only in NSAP
addresses that follow ANSI Standard X3.216-1992.

In the Internet world, the list of names that are formally registered is
(remarkably) even longer than it is for OSI. The Internet Assigned
Numbers Authority (IANA) is responsible for assigning and registering
names (which, in Internet jargon, are simply called “numbers,” since
that’s what they are) of the following types:

Version numbers

Protocol numbers

Port numbers

Internet multicast addresses

The Internet Ethernet address block

IP type-of-service parameter values

IP time-to-live parameter values

Domain Name System parameter values
BOOTP parameter values

Network management parameter values
ARPANET and MILNET logical addresses
ARPANET and MILNET link numbers and X.25 address mappings
IEEE 802 numbers of interest

XNS protocol types

PRONET 80 type numbers

Ethernet numbers of interest

Ethernet vendor address components

UNIX port numbers

Address resolution protocol parameters
Reverse address resolution protocol parameters
Dynamic reverse address resolution protocol parameters
X.25 type numbers

Public data network numbers

TELNET options

96 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Mail encryption types
Machine names

System names

Protocol and service names
Terminal type names

These number registrations are published periodically in an Inter-
net RFC entitled Assigned Numbers.

The preceding list does not include the most visible Internet regis-
tration activity: the Internet registry, which assigns Internet network
numbers (the high-order part of a 32-bit Internet address, from which
individual IP host numbers are generated). This activity is formally the
responsibility of the Internet Assigned Numbers Authority, but the actu-
al assignment task has traditionally been carried out by the Internet’s
Network Information Center (NIC). The Network Information Center
was operated for many years by SRI International in Menlo Park, Cali-
fornia, but was recently reassigned to Network Solutions, Inc., operating
under contract to Government Systems, Inc. (GSI), operating under con-
tract to the Defense Information Systems Agency (DISA, which was for-
merly the Defense Communications Agency, or DCA).6 In most cases, a
public or commercial network operator (service provider) will apply to
the Internet registry for network numbers on behalf of its clients; in some
cases, the registry preallocates blocks of numbers to a service provider,
which is then free to further assign them to its clients as needed.

Object Identifiers

Of the data types predefined by the Abstract Syntax Notation One
(ASN.1) standard (see Chapter 4), one—the OBJECT IDENTIFIER data
type—is particularly important to naming in OSI. The value of an object
identifier names an information object; it is an ordered set of non-
negative integer values whose root is defined in ISO/IEC 9834-1 and
whose branches or arcs are derived from the registration authorities
described earlier and depicted in Figure 5.2.

What are information objects? Applications and systems are objects.
The documents that define OSI protocols and services are objects. OSI
Directory entries and attributes of those entries (see Chapter 7); X.400

6. If you followed all that, you might be qualified for a career in Internet name assign-
ment; see Appendix D for the address and phone number of the Internet Network Inform-
ation Center.

NAMES AND ADDRESSES 97

Message Handling System mail addresses (see Chapter 8); and the sets of
counters, gauges, and status indicators used in the management of net-
work resources by OSI's Common Management Information Service and
TCP/IP’s Simple Network Management Protocol (see Chapter 9) are
among the many things OSI considers objects. Essentially, anything in a
network can be modeled as an object; among these, objects that require a
name for unique and unambiguous identification are registered by a
naming authority.

Conclusion

This chapter has described the roles names play in OSI and the formal
composition of OSI addresses. (The roles of names in TCP/IP have inten-
tionally been deferred to Chapter 7, where the Domain Name System is
discussed, and the details of network addresses have been deferred to
Chapter 13, where OSI network service access point addresses and IP
addresses are discussed.) The names most relevant to understanding
how OSI applications identify each other for the purpose of conducting
information exchange have been specified as well. The authors have also
explained that the means by which identifiers in general are guaranteed
uniqueness is through the establishment of registration authorities recog-
nized by ISO/CCITT and that a similar infrastructure exists for TCP/IP—
i.e., the Internet Assigned Numbers Authority. The chapter concluded
with a discussion of the role played by object identifiers in the “name
game” and the relationship of this ASN.1 data type to name registration.

PART THREE

messsssssm UPPER LAYERS

OPEN SYSTEMS APPLICATIONS

An architectural characteristic of open system networks (as opposed to
proprietary networks) is the assumption of a set of generic, or generally
available, applications that serve as building blocks or “tools” for con-
structing more complex distributed system applications. These are gener-
ally regarded as “applications” in the TCP/IP world; in OS], they are
called distributed application services.

Distributed application services, whether OSI- or TCP/IP-based,
share some characteristics in common. For example, irrespective of
whether one describes a file transfer application that uses TCP/IP’s File
Transfer Protocol (FTP) or OSI's File Transfer, Access, and Management
(FTAM), the file transfer application will have at least the following
characteristics:

+ An end-user interface that provides a human or another application
with the means to enter commands that direct the application to
send files to and receive files from a remote host, list or change
directories, rename or delete files, move files from one directory to
another, etc. (There will also be a means for the application to
inform the end user of the results of the actions, successful or
failed.)

+ The means of performing input to and output from mass storage
device(s) (disk-tape).

» The means of transferring the files and file-related information
between hosts.

Thus, for both OSI and TCP/IP, there are local and communica-
tions components to every distributed or end-user application. The local

101

102

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

component of an application consists of the end-user and /or programmatic
interfaces to the application, functions that access local input/output
resources such as disk, and access to computing resources of a host
machine. The communications component consists of the entity that pro-
vides distributed communications capabilities to the distributed applica-
tion; OSI calls the communications piece an application entity (AE) and the
sum of the parts that comprise a distributed application an application
process (AP). (See Figure 6.1.)

Although the notion of an application process is common to both
TCP/IP and OS], their approaches to constructing application entities is
different. In TCP/IP, each application entity is composed of whatever set
of functions it needs beyond end-to-end transport to support a distrib-
uted communications service—e.g., the exchange of mail, remote file
access, or file transfer—into the protocol(s) of that particular application;
in other words, each application process builds in its own, often unique,
set of tools, commands, and exchange mechanisms. File Transfer
Protocol, for example, has an entirely different set and way of exchang-
ing commands and replies than “Internet mail” (sometimes called
“SMTP /822" mail, referring to RFC 822, which describes mail message
contents, and RFC 821, Simple Mail Transfer Protocol [SMTP]; see
Chapter 8). There is no common notion of establishing application “con-
nections” among Internet application services,! and no common reliable

Anend- userappl i cation(mail ,fil etransfer,etc

Appl i cationproce

| nput / out pu User
interfac
Applicationenti!

Applicationentit

Appl i cati onproces

| nput / out pu User
i nterface

Applicationentil

Appl i cati onLayer

Present at i on Layer \/

FIGURE 6.1 Application Process Structure

1. In the implementation of the original set of application or host protocols, the initial

OPEN SYSTEMS APPLICATIONS 103

transfer and dialogue-control service, nor is there a true, common network-
programming language or a common remote procedure call mechanism.
(The External Data Representation [XDR; RFC 1014] and Remote Procedure
Call [RPC; RFC 1059], developed in conjunction with Network File System
[NES; REC 1094; Sandburg 1988], are, in a sense, application service ele-
ments but are not formally used as such outside of NFS.) This is not
intended as a criticism but merely to illustrate that, by and large, each
Internet application process builds in what it needs and assumes only
that an underlying transport mechanism (datagram or connection) will
be provided.

In OS], each distributed application service selects functions from a
large common “toolbox” of application service elements (ASEs) and com-
plements these with application service elements that perform functions
specific to a given end-user service—e.g., mail (message handling) or file
transfer (see Figure 6.2). Conceptually, application entities in TCP/IP
have a single service element, whereas application entities in OSI may
have many.

An application entity that supports OSI’s File Transfer, Access, and

Appl i cat i onpr ocess

Appl i cat i onpr ocess

Applicatiorentity Applicatiorentity

Appl i cati onser vi ceel enent

Appl i cati onLayer

Present at i onLay« \ / /

Bui | di ngbl ocksof
appl i cati orservic

FIGURE 6.2 Composition of an Application Entity

connection protocol (ICP; RFC 123) conceptually served this purpose, which we shall see in
Chapter 10 is provided by the association control service element in OSI. While the initial
connection protocol was implemented separately in a few implementations, most folks
implemented the functions used from this conceptual “inner protocol” directly in FTP,
Remote Job Entry, and TELNET rather than using it as a layer or independent module on
top of the connection-oriented, host-to-host protocol, which later evolved into TCP.

104

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Management thus has at least one application service element (FTAM)
that is different from OSI's Message Handling System (MHS) but both
use the same “tool” for establishing communications (the association
control service element discussed in Chapter 10). Similarly, the OSI
Directory service and common management information service ele-
ments use the association-control “tool” as well as a common remote pro-
cedure call “tool” (the remote operations service element, also discussed
in Chapter 10). In such configurations, one application service element is
a user element of other ASEs (see Figure 6.3).

Extending the “tool” analogy a bit further, to tighten a screw or bolt
on an automobile, a mechanic (the end user) uses tools like an electric
screwdriver and a ratchet wrench (ASEs); both of these require another
tool (another ASE) to complete the task: the electric screwdriver requires
a bit, and the ratchet wrench requires a socket. The screwdriver and
wrench are thus user elements of the bit and socket ASEs, respectively.
Absent the bit and socket, these tools may be useful, perhaps, but only as
hammers.

Note that in OSI, application service elements that provide intu-
itively obvious “end-user” application services—message handling, direc-
tories, file transfer—can themselves be regarded as tools of multifunction
distributed applications; a messaging application may, for example, make
use of both message handling service and directory service elements, the
latter invoked for the purpose of obtaining inter-mail application routing

4 N
(User el enent)

Renot e
oper ati ons

(Rel i abl et ransf9

Associ ati on
control

Associ ation

control

- | J -] J

Present at i onser vi ce Present at i onser vi ci

FIGURE 6.3 ASE Use of Other ASEs

OPEN SYSTEMS APPLICATIONS 105

information or mail addresser. Moreover, an application service element
such as a message handling service element in one instance provides an
“end-user” application—mail handling—but also acts as a “tool” for other
application services, such as electronic data interchange and office docu-
ment interchange. Finally, an end-user application is not restricted to
using only those application service elements that are made standards by
CCITT and ISO/IEC: “home-brew” user service elements can be written
in ASN.1, and these, too, may use standard application service elements.

Given the contrast in styles, the TCP/IP approach to building ap-
plications has sometimes been called a vertical one: each application was
developed independently, “top” (i.e., end-user application service) to
“bottom” (i.e., transport). The OSI approach, consistent with the perva-
sive notion of layering, has been called a horizontal approach (end-user
applications developed using a common application-development infra-
structure; see Figure 6.4).

&8 O 5 ©
m s I m = -
b ~ o b ~ @
n % 2 3 14 | o 3 3 e
- 3 Z g 9 (Distributed z 3 = g 9
% 8 8 & % applicatio—m = 3 S & T
g . o % 2 concept ual) 5 - o) e 2
2 Z 3 3 < P 2 = 3 3 <
—h o =, > o =. S o
o) Q- -~ 2 2 2 — - @
lication n Q
#llelle|ld L™ Jls 38|
12 5 é Y la protocols, = J§> % - 2
=} (0] .
vlla | |9 I||2 servi ces
Conmmon
appl i cati on-
devel oprrent
i nfrastructure
Conmmon Co n
transport . ransp: ort
servi ces servi ces

FIGURE 6.4 Comparison of Internet and OSI Application Structure

106

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Distributed Application Services

OSlI is clearly not the exclusive distributed applications environment for
all forms of distributed applications services. Applications developed
over TCP/IP and other protocol suites tending toward “openness” satis-
fy many essential end-user needs and are likely to continue to satisfy
these needs along with OSI. This diversity is not a truly bad thing (see
Chapter 17), since, historically, diversity and competition have often led
to improvements and landmark developments in computer communica-
tions. It is also important to note that the applications-development infra-
structure of OSI—the upper layers—may easily be ported over to existing
transport service infrastructures; this is especially true for TCP/IP, and
the success of enterprises of this sort is discussed in subsequent chapters.

AE A The g?nemlity and ﬂexibility of the OSI applications-deve.lop-
ment infrastructure is not without cost, and detractors continue
to berate it, criticizing it for its complexity (in both specification and implemen-
tation) as well as the excessive processing and memory overhead that is associ-
ated with operating distributed applications in this environment. Some of this
criticism must be tempered by the fact that many of the existing implementa-
tions are “first-generation,” and it is to be expected that further field and imple-
mentation experience will yield leaner, faster software. Some of the criticism is
well-founded, and one can only hope that those who have implemented OSI-
based applications will work to see that the standards are revised to correct major
shortcomings. Despite the criticism, OSI continues to be a catalyst for the devel-
opment of protocol and service frameworks for interesting distributed services.

OSI's applications-development infrastructure provides a convenient
and multipurpose framework for the development of a wide range of dis-
tributed applications; a sampling of these is described briefly in the follow-
ing subsections. Some are variations on a familiar “theme”—electronic mail,
file transfer, directories—whereas others are more forward-looking.

Electronic Mail and Message Handling System (MHS) “E-mail” is the
ability to send and receive the electronic equivalent of written correspon-
dence typically delivered through a postal agency. In addition to simple
textual mail messages, OSI message-handling services facilitate the elec-
tronic exchange of documents that, in principal, can be comprised of fac-
simile, graphics, or even speech or video. OSI's Message Handling System
is also likely to provide a distribution platform for office and electronic
document exchange.

OPEN SYSTEMS APPLICATIONS 107

Electronic Data Interchange (EDI) The ability to exchange business
documents—e.g., standard “forms,” such as invoices, purchase orders,
payment orders, and customs declarations/reports—is an international
concern, especially for the European Economic Community. OSI stan-
dards for these forms are consistent with the United Nations/EDIFACT
Standard, and the forms can be transferred using OSI's Message Hand-
ling System (see Chapter 8).

Office Document Architecture/Interchange (ODA/ODIF) The ability
to exchange documents containing text and graphics—spreadsheets,
page layouts from desktop-publishing applications, papers produced
using word-processing applications—between like and dissimilar appli-
cations (e.g., from brand X word processor to brand Y) without losing
any of the document’s contents is accommodated within OSI’s office
document architecture, also known as the CCITT T.400-series Recom-
mendations for document Transfer, Access, and Manipulation (DTAM).
The office document architecture specifies document structures, inter-
change formats, character content architectures, and content architec-
tures for raster, tile raster, and geometric graphics (ISO/IEC 8613: 1989),
in many parts).

Directory Services Like the operator-assisted directory services offered
through the telephone network, this service includes the ability to match
names with addressing information. In addition, OSI offers a compre-
hensive registration and identification infrastructure that helps individuals,
applications, and organizations acquire information (“attributes”) that
provides a more detailed characterization of things (“objects”) that are
named. The OSI Directory is expected to serve as a repository for infor-
mation that characterizes people, applications, mail systems, manage-
ment systems—virtually any information that one wishes to register and
make publicly available.

Distributed File Systems The ability to access and manage file systems
mounted on remote computers is an integral part of distributed process-
ing today. OSI offers new tools in this area and also an equivalent envi-
ronment upon which to run existing and eminently popular tools such as
Network File System.

Network Management Network management provides the ability to
monitor the status and use of resources of a distributed processing envi-
ronment—hosts, bridges, routers, the transmission facilities that inter-
connect them, and software (application as well as protocol processes)
resident on these machines—as well as the ability to detect, isolate, and

108

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

circumvent problems that might arise in any of these network compo-
nents. OSI has a comprehensive “common management” applications
infrastructure that provides monitoring, analysis, accounting, and diag-
nostic services and more.

Remote Database Access OSI provides a generic remote database arch-
itecture—protocols and services—for client/server interactions (dialogue,
transaction, and data-resource management) and also provides for a set
of “specializations” that allow one to further define the parameters of
remote database access operations to accommodate a specific remote
database language—e.g., the standard query language SQL (ISO/IEC
9579: 1992).

These are but a few of the areas of distributed processing and infor-
mation technology that can use OSI. Of course, many of the capabilities
OSI offers have easily identifiable TCP/IP counterparts. Applications
based on the Simple Mail Transfer Protocol (see Chapter 8) offer textual
electronic-mail correspondence similar to that offered via OSI's Message
Handling System and, with recent extensions that are today experimen-
tal, may enable multimedia messaging as well. The Domain Name System
offers a host name- to-IP address service similar to an application-
name—to—presentation-address capability offered by the OSI Directory;
other Internet applications—such as WHOIS, FINGER, Archie, the Wide
Area Information Service, and the WorldWideWeb—offer a variety of re-
source locators and information services (see Chapter 7).

In certain application areas—messaging and directory services—
many believe that OSI adds value to existing TCP/IP applications. In
other areas—for example, distributed file services and window-based
systems—existing services like NFS are considered superior to applica-
tion services developed specifically for OSI. In fact, the utility and wide-
spread application of services such as NFS and the X Window System
have provided the basis for the development of conventions and eventu-
ally standards for operating these applications over OSI stacks.

This is true in the area of network management as well. Although
there are those who believe that OSI’s “common management” is superior
in many ways to the Simple Network Management Protocol, applications
based on the SNMP are sufficiently popular that they are now used to man-
age dual-stack (OSI and TCP/IP) internets (actually, the Simple Network
Management Protocol framework provides network management for large-
scale internets that are IP- as well as XNS/IPX, AppleTalk-, and OSI-based).
And recent extensions to the Simple Network Management Protocol
arguably improve on an already useful and proven commodity.

OPEN SYSTEMS APPLICATIONS 109

There are also areas where OSI will offer application services that
are to date not addressed in TCP/IP: OSI’s progress on transaction pro-
cessing, office document architecture, and electronic data interchange
standards is followed with great interest by the Internet community.

Conclusion

This chapter has described how OSI and TCP/IP differ significantly in
their approaches to constructing distributed system applications. OSI
asserts that distributed applications operate over a strict hierarchy of layers
and are constructed from a common tool kit of standardized application
service elements; TCP/IP makes no such assertion, insisting only that
distributed applications operate over a common end-to-end transport
service. Which approach is better? OSI’s is general and flexible, and its
emphasis on modularity and reuse of common mechanisms comports
well with current object-oriented models of application development;
but generality costs, and as is the case with many aspects of OS], the inef-
ficiency of a too-literal implementation may outweigh the theoretical
benefits. TCP/IP’s “apply to affected area as needed” approach is more
application-specific and may lead to the redundant implementation of
the same function in many different applications; but in most cases, the
greater efficiency and performance of the resulting applications out-
weigh the potentially greater inefficiency of application software devel-
opment. It is interesting to observe that the most promising new work on
the implementation of the “upper layers” of OSI (see Chapter 11) com-
bines the functions of the application, presentation, and session layers
into a common library of modules that are included—or not included—
in applications, as each demands. This is yet another example of OSI's
learning and borrowing from TCP/IP—an exchange that takes place in
both directions much more readily (and frequently) than most people
suspect (or are willing to admit).

The remaining chapters in Part Three examine application services
and upper layers in a “top-down” fashion. Although this may seem con-
trary to the customary flow, a top-down approach has the advantage of
allowing readers to deal first with easily recognizable and practical
examples of services encountered on a daily basis—the use of a tele-
phone, a postal service, a telephone book, or directory assistance—and
gradually learn the technical aspects of how equivalent “electronic” ser-
vices are provided across complex internets. Thus, Part Three continues

110

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

by providing a comparison of application services offered by both archi-
tectures, focusing on function and high-level operation. Chapters 7, 8,
and 9 examine three distributed application services—directories, elec-
tronic messaging, and network management. These are chosen because
they are popular and easily recognized distributed applications and
because there is considerable overlap between the OSI and TCP/IP coun-
terparts with respect to services offered. From this sampling, readers are
expected to gain an overall understanding of distributed processing in
OSI and TCP/IP.

Chapter 10 examines three application service elements—associa-
tion control, remote operations, and reliable transfer—that provide
essential, or “core,” services for distributed applications in OSI, and
Chapter 11 describes the OSI presentation and session layers. A conse-
quence of the rigid layering in the OSI upper layers is that many of the
functions that an application may use or invoke are accessed through
application service elements but performed elsewhere in the architecture
(e.g., in the session layer). Chapter 10 introduces such functions at a con-
ceptual or metalevel, whereas Chapter 11 describes how these functions
are provided.

It should be noted that Chapters 10 and 11 diverge from the side-
by-side analysis that is a convention elsewhere in the text, as the func-
tions corresponding to the OSI upper layers are embedded in the Internet
applications described in Chapters 7, 8, and 9 on an “as-needed” basis.

DIRECTORIES

In a conversation with Richard Cambridge in 1755, Samuel Johnson
made the now famous remark that “Knowledge is of two kinds. We
know a subject ourselves, or we know where we can find information
upon it” (Boswell 1791). In a large network, it is neither possible nor
desirable for every network element! to know everything about every
other network element—impossible because there is too much to know,
and undesirable because much of the information is constantly changing,
and the more widely distributed it is, the more difficult it is to maintain
synchronization among all the many places in which it is replicated.

Since we cannot invest every network element with complete knowl-
edge, we must provide a system whereby they “can find information
upon it.” This is the role of the network directory, which—as anyone
who has ever used a telephone directory might easily surmise—is simply
a place to store lots of information about the elements of a network. By
doing so, the network directory not only solves the problems of “There’s
too much information to store everywhere” and “The information changes
too often to be kept current everywhere” but also permits references to
network elements to be made indirectly, through the directory, by name,
rather than by some other attribute (such as network address, geographic
location, or organizational affiliation) that might not be as permanently
or reliably attached to the element as its name.

1. Intuitively, we think of network elements as the computers—PCs, workstations,
bridges, routers—that provide network and host services. In the context of directories,
however, the notion is extended to applications, to users of the network, and even to more
fundamental pieces of such network elements including the information stored in these
elements; in fact, very nearly every object we name within a network may be characterized
and accessed by the use of directories.

111

112

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Given such a general definition of directory, it is easy to imagine the
network directory as a general-purpose database system—and in princi-
ple, it could be. In practice, however, the directory services that have
been developed for open systems networking have been designed for the
more specialized purpose of relating a particular class of names to a par-
ticular set of attributes associated with them—for instance, mapping
Internet host names (such as “ni c. swi t ch. ch”) to IP addresses (such
as “130. 59. 1. 40”). In this chapter, we will concentrate on the open
systems directories whose core service is name-to-address mapping
(although they provide other services as well): OSI's X.500 Directory and
the Internet’'s Domain Name System. However, we will also take a look
at a number of “directorylike” utilities and introduce the field of networked
information retrieval, which began with a directory model but has evolved
far beyond it.

The basic function of a directory service is deceptively simple, but
the way in which directory services are used in open systems networks is
not. The telephony model of a directory is a good place to begin our dis-
cussion of the design criteria for a network directory service, precisely
because it is not a good model for such a service.

The Telephony Model

For many people, the term directory suggests the local telephone compa-
ny’s printed telephone directories and dial-up “directory assistance.”?
The telephone directory system is simple and straightforward: given the
name and address of a telephone subscriber, it returns the subscriber’s
telephone number (unless the subscriber has paid a surcharge to the tele-
phone company for an “unlisted number”—in which case, the informa-
tion is available only to duly authorized law-enforcement personnel).
This service is possible because the telephone companies jointly and
exclusively administer a common pool of telephone numbers, for which
the boundaries of local jurisdiction are (with rare exceptions) well-
established and universally accepted.

This directory service has three limitations that argue strongly
against its applicability to a worldwide open systems Internet. First, it is

2. Directory assistance was widely known as “information” until the telephone compa-
nies, for which providing “information” is an expensive gratuity to customers who are “too
lazy to look it up in the book,” successfully stamped out the familiar term in favor of one
that subtly suggests infirmity on the part of the user.

DIRECTORIES 113

able to provide a telephone number only when given the subscriber’s
name and address. Lacking either a complete name or a sufficiently
detailed set of attributes to disambiguate entries for the same name in
the same locality, no other information that characterizes or distinguish-
es an individual can be used to facilitate a query. (Some printed directo-
ries, such as the yellow pages, may contain additional information provided
by the subscriber; this is not always accessible “on-line” through directory
assistance. For example, it is possible to ask for “a florist in Horsham”
and obtain the name and telephone number of at least one in that city,
but it is unlikely that an operator will be able to tell you whether the
florist is a member of FID or Teleflora, or which credit cards the florist
accepts.) Second, it is not uniformly accessible. In order to obtain directory
assistance, one must first know the appropriate country, city, and/or
area codes, as well as the number for directory assistance itself, and con-
struct one’s query according to the appropriate local conventions—for
example, in the appropriate local language. Third, the telephone direc-
tories—particularly the printed versions—are typically distributed no
more frequently than once a year and thus inevitably contain a signifi-
cant amount of incorrect (outdated) information.

The telephone directory system benefits enormously from a key
feature of the telephone network: the fact that there is a direct relation-
ship between the hierarchical structure of telephone numbers (with their
country, city, area, and exchange components) and the geographic loca-
tion hierarchy within which the telephone subscribers live. Data net-
works typically do not share this characteristic, despite being organized
hierarchically. The corporate network of a large multinational company,
for example, is likely to be organized according to the company’s operating
hierarchy (divisions, departments, cost centers, etc.), which may place
the London and Hong Kong sales offices close together and the sales and
personnel departments geographically colocated in Hong Kong far apart.
Further, the affiliations and service relationships of data networks are (to
date) neither as uniform nor as tightly regulated as telephony networks.

Directory System Principles

Given that the simple telephony model is not appropriate for a large-
scale network directory, what are the characteristics that such a directory
should have?

+ Both the directory database and the mechanisms for operating on it

114

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

must be distributed; the size of the database and the frequency with
which directory information must be updated preclude centralization.

« However, the directory must appear to its users to be a single, con-
sistent database. The same query, originating from any point in the
network, should return the same information.?

e The directory must be organized hierarchically, so that the respon-
sibility for managing the information in the directory can be dele-
gated to different organizations as self-contained “subtrees.” The
hierarchy must be extensible, since the way in which organizations
allocate and apportion responsibility among and within themselves
in a large open systems network is certain to change over time.

« The directory must be organized in such a way that it is possible to
formulate unambiguous queries; that is, it must not be the case that
two different information elements contained in the directory can-
not be distinguished by the directory’s query mechanism.

+ Because the directory for a large-scale network is necessarily itself a
large-scale distributed system, it must not be application-specific—
that is, it must be capable of storing information about objects for
many (ideally, all) of the applications for which the network is
used. This argues strongly for a directory information model based
on the definition of object classes (families of objects sharing certain
characteristics) and attributes (information about an object that
either describes the object or distinguishes it from other objects), so
that two different applications that refer to the same type of object
do not require that the directory store two separate (application-
specific) sets of information about the same objects.

Open System Directories

The world of open systems networking has produced two large-scale,
open directory systems. The Domain Name System (DNS) is the established

3. Actually, the consistency requirements for a network directory are not as stringent
as they typically are for a distributed database system. It is reasonable and acceptable, after
an update, for the directory to exhibit local inconsistencies for some period of time until the
change has propagated throughout the system. A directory query is almost never an end in
itself but is followed by an attempt to use the information obtained, with a strong likeli-
hood that the inconsistency will be exposed. Since the directory query and the subsequent
network access based on it are not synchronized, it matters little whether the information
changed before or after the directory query if it changes before the information is actually
used.

DIRECTORIES 115

Internet directory, and the OSI Directory, which is also known as “X.500”
(after the first of the set of CCITT Recommendations that defines it) is
both the standard for OSI networks and a candidate for use within the
Internet (although not necessarily as a replacement for the Domain
Name System).

The OSI Directory is deliberately comprehensive; it is intended to
capture the relationship between an arbitrary name and an arbitrary list
of attributes for virtually any network application. The Domain Name
System is—particularly in practice—more narrowly focused: it associates
the names of two specific resources (electronic mailboxes and Internet
hosts) with two specific corresponding pieces of information about them
(mail server addresses and IP addresses, respectively), although its
design permits extension to other uses. Although the generality of the
OSI Directory invites its application to other problems—it is used, for
example, to store universal document identifiers for some of the networked
information retrieval projects described at the end of this chapter—we
are concerned here primarily with its deployment as a traditional “name
lookup” service in both OSI networks and the multiprotocol Internet.

The Domain Name System

In the beginning, there were just four nodes in the only Internet around
(the ARPANET), and maintaining a table of mappings from host name to
network address was not a problem. In the early years of the ARPANET,
growth was modest, and the host-name-to—address mappings were
maintained by the Network Information Center (NIC) in a single file
(host s. t xt), which was periodically retrieved (by using electronic file
transfer or, in extreme cases, by requesting a magnetic or even paper
tape) by each host or site administrator and loaded into each host
attached to the network. Each host would then search through the file
whenever it needed to find the network address for a named host.

This system worked well while the ARPANET was small, but as it
grew, and as the composition of the network changed, the bandwidth
consumed by the periodic and increasingly frequent electronic file trans-
fers to retrieve the host s. t xt file from the NIC, and the disconnect be-
tween site administrators’ management of their local names and ad-
dresses and the appearance of changes in the NIC’s definitive
hosts. t xt file, made it clear that the centralized scheme was impracti-
cal and that an alternative would have to be found.

The Domain Name System began as a class project at the University

116

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Domain Names

of California at Berkeley and has, in recent years, been released by the
Berkeley UNIX group as part of the Berkeley Software Distribution. Paul
Mockapetris—first at Berkeley and later at the Information Sciences
Institute of the University of Southern California—conceived an alterna-
tive to host s. t xt based on (1) a distributed database containing gener-
alized resource records and (2) a naming scheme based on hierarchically
structured domain names. His original design was published in November
1983 in RFCs 882 and 883; after experience with several implementations,
the Domain Name System (DNS) was formally specified in RFCs 1034 and
1035 in November 1987.

The deployment of DNS in the Internet is, to say the least, nonuni-
form. Different versions of BIND—the Berkeley Interactive Name Demon,
the UNIX software for name resolution—are bundled with different
releases of UNIX software, and host-name lookups are done in a variety
of different ways, depending on the vendor and on individual site phi-
losophy. Some networks—including, for example, the entire U.S. federal
MILNET—have decided not to use DNS and to rely instead on the old
hosts. t xt file for host-name-to-IP-address translation for the simple
reason that there is no DNS security model to support the authentication
of users and providers of DNS services. Nevertheless, DNS is one of the
most important services in the Internet, and most of the strategic plans
for the evolution of the Internet and the TCP/IP architecture depend on
the near-universal deployment of DNS or a successor.

The DNS is a distributed system, with distribution based on the
concept of delegated authority for the administration of individual do-
mains and subdomains. This means that local system administrators
maintain files containing information about their local hosts and net-
works, and this information is made available to users of the DNS
through name servers that are locally configured and maintained.

The DNS name space is hierarchical, consisting of a set of nested
domains, each of which represents an administratively related set of
Internet hosts. Directly below the root of the hierarchy is a set of top-level
domains, which originally referred to logical parts of the U.S. ARPANET:

arpa: for the U.S. Department of Defense Advanced Research

Projects Agency itself
com for commercial organizations
edu: for educational institutions
gov: for U.S. nonmilitary government agencies

ml: for U.S. military agencies

DIRECTORIES 117

net: for organizations directly involved in the provision and
support of ARPANET and its services
org: for “other” organizations

With the expansion of the modern Internet outside the United
States, additional top-level domains have been added, corresponding to
individual countries; for example, au, ca, us, uk, se.

These country-code domain names are normally chosen from the
two-letter codes registered in ISO 3166, Codes for the Representation of
Names of Countries (ISO 3166: 1988).

AHE A The introduction of country-code domain names came about
not because the DNS architects believed that it was the right
way to register domains in countries outside of the United States but because
they could not convince most of the non-U.S. network and site administrators
that the established com edu, and other domains were not exclusively for
U.S.-based organizations. The introduction of country-code top-level domains in
parallel with the old nongeographic domains has led to some interesting anom-
alies. RARE,* for example, administers the domain r ar e. nl under the top-
level domain for the Netherlands; RIPE,> which is organizationally affiliated
with RARE, administers r i pe. net . In the United States, the Corporation for
National Research Initiatives (which operates the IETF secretariat, among other
things) operates nri . reston. va. us; Bolt Beranek and Newman (which
built the first IMPs and routers for the ARPANET, among other things) oper-
ates bbn. com Observing the benign chaos with which the original top-level
domain scheme has been infected by the introduction of country-code domains,
Paul Mockapetris introduced the i nt top-level domain—for which Paul is the
administrator —specifically for “people who don’t understand that or g isn't
just for U.S. organizations.”

Below the top-level domains, names are constructed hierarchically
by identifying subdomains, sub-subdomains, and so on to (in principle)
any desired depth, until the final name (at a leaf of the tree; see Figure
7.1) completes the identification of an individual Internet host. Thus,
within the top-level domain uk, the subdomain ac. uk is administered
on behalf of U.K. academic institutions; within ac. uk, the subdomain
ucl . ac. uk is administered by University College, London; and within

4. Réseaux Associés pour la Recherche Européene. RARE is the principal sponsor and coor-
dinator of academic and research networking in Europe.
5. Réseaux IP Européens (literally, “Research IP for Europe”).

118

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

How the DNS
Works

the subdomain ucl . ac. uk, the host name mur phy. ucl . ac. uk identi-
fies a workstation sitting on the desk of Professor Suzanne Chapin in her
office in Whitehead Hall at University College, London.

The rules for the formation of names are straightforward: a name
may be no longer than 63 characters; it must start with a letter; it must end
with either a letter or a digit; the rest of the name may consist of letters,
digits, and hyphens; and both upper- and lowercase letters may be used
(although name lookups in the DNS are defined to be case-insensitive).

The DNS is implemented as two distinct components: DNS servers (usu-
ally called name servers), which contain information about one or more
zones; and DNS clients (usually called resolvers), which interrogate name
servers on behalf of local host processes.

The DNS Server Each DNS server provides name-to-address mappings
for one or more zones. A zone is a set of contiguous domains beginning
at some point in the DNS naming hierarchy and comprising that point
and all the subtrees below it, as far, in each subtree, as either the leaves of
the subtree or the point at which another (subordinate) zone is defined.
In practice, an actual name server may be responsible for serving more

r oot

ml gov com us uk edu net
tis bel | core ci sco vel | fl eet va ac usc
sabre swor d kni fe reston ucl
nri nmur phy

Figure7.1 A Partial DNS Tree

Note: The word r oot is used merely to illustrate where, conceptually, the root of the name
tree begins; domain names do not have the explicit identifier r oot as a component.

DIRECTORIES 119

than one zone and will generally also serve the reverse i n- addr . ar pa
zones (see “‘Reverse’ Lookups,” later in the chapter) that correspond to
its local domains.

Secondary name servers can be identified for each zone, so that name
resolution for that zone is not cut off when the primary name server, or
the links to it, are lost.

The DNS Resolver A DNS name server not only stores and manages
information about domains; it also responds to queries concerning that
information from client processes or resolvers. A resolver is typically a set
of library routines that are invoked by an application program when it
needs to resolve a name reference. In BSD UNIX, for example, the rou-
tines are get host bynane and get host byaddr . The resolver takes the
name and uses it to query either a local table® (if the reference is to a
locally maintained name or to a name that the resolver has maintained in
a local cache) or one or more DNS servers for corresponding resource
records.

The resolver’s most significant task is to formulate a proper query.
Since the DNS works with fully qualified names, this may involve a bit
of interpretation on the part of the resolver, which may be presented by
its user with a name that is not fully qualified. Some resolvers abdicate
this responsibility entirely and are capable of looking up only the name
string exactly as provided by the user. Others are able to recognize a less
than fully qualified name and supply the missing high-order domain
specification automatically (defaulting, for example, to the domain in
which the user’s own host resides).

Clients and servers use a common format for DNS queries and
replies. Basically, a client provides a unique identifier (so it can later match
responses to queries) and poses a number of questions the server should
attempt to resolve. In the case of name-to-address lookups, each question
is an entry of the form {query domain name, type, class}; in this example,
the domain name to be resolved is provided, the query type is set to a
value indicating that the client is looking for an IP address, and the query
class is set to a value indicating which object class (Internet domain
names) is to be interrogated. The server returns a similarly formatted

6. Many resolvers have sophisticated methods of caching domain names, to reduce
delay in resolving DNS queries. A frequent practice is to request and copy an entire DNS
server’s name information, then periodically send consistency-check inquiries to the DNS
server. Two benefits are introduced when hosts practice caching: first, the processing of a
DNS inquiry is faster, because there is no DNS client/server (protocol) interaction; second,
if a server becomes unreachable, the local resolver can continue to satisfy lookups using
the cache.

120

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

message with answers in a general form (a resource record). The resource
record again contains a domain name, type, and class and, additionally,
provides a suggested time to live for the information contained in this
resource record and a variable-length resource data field, preceded by a
length indicator field (see Figure 7.2).

Although the principal users of a DNS resolver are host applica-
tions, most host operating systems allow human users to present a query

0 15 16 31
o Parameters
Identifier .
(operation type, query/response type)
No. of questions No. of answers
No. of authority records No. of additional records

Questions

Answers (resource records)

Authority resource records

Additional resource records

FIGURE 7.2 DNS Message Format

DIRECTORIES 121

“Reverse”
Lookups

Mail Exchange

directly, using, for example, a command such as the UNIX nslookup,
which, in the SunOS version, looks like this:

% / usr/ et ¢/ nsl ookup
Defaul t Server: naneserver. bbn. com
Address: 128.89.1.2

> nic.ddn. ml
Server: naneserver. bbn. com
Address: 128.89.1.2

Name: nic.ddn. m|
Address: 192.112.36.5

>exi t

Most Internet applications, including common ones like FTP and
TELNET, accept a domain name from the user and call a resolver inter-
nally, so it is rarely necessary for a user to query the DNS directly (except
out of curiosity and perhaps to trouble-shoot networking problems).

A special domain within the domain name space, i n- addr . ar pa, pro-
vides a mechanism for performing “reverse” lookups—that is, finding the
name associated with a given address. The entries in the i n- addr. ar pa
domain are constructed by reversing the order of the components of a net-
work number (the first 1, 2, or 3 bytes of an IP address, depending on
whether the address is a class-A, class-B, or class-C address; see Chapter
13), and appending the i n- addr . ar pa domain name. Thus, for example,
the entry for BBN’s class-B network number, 128.89.0.0, would be
89.128. i n-addr. ar pa; a lookup on this entry would return the
domain name bbn. com Individual host systems, such as the Macintosh
on the desk in Lyman Chapin’s office at BBN, appear as subdomains of the
network-number domain; for example, 224. 16. 89. 128. i n-addr . ar pa.

The DNS also plays an important role in electronic-mail service (see
Chapter 8). A host acting as a mail transfer agent must know the host
name and IP address of the host to which a mail message is to be delivered
before it attempts the delivery. It extracts the domain name part from the
destination mail address (again, see Chapter 8), and creates a query with a
question of query type MX (for “mail exchange”). The DNS server returns
an answer with one or more MX resource records. Each MX record identi-
fies a host to which mail may be forwarded, with each host domain name
accompanied by an indication of how desirable it is to use this host for for-
warding mail relative to others in the list (a preference field).

122

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

The OSI Directory

The X.500-Series
Standards

The OSI Directory is both a logical database of information about a set of
objects in the real world and a system of agents and protocols that man-
age the information and support a variety of queries and searches by
directory users. It is not intended to be a general-purpose database sys-
tem, although an actual implementation of the Directory might be built
upon such a system. It is an expressed architectural goal of the OSI
Directory that it be capable, in principle, of accommodating the informa-
tion-storage and -distribution needs of every network and every host
throughout the world of open systems networking:

ISO/IEC 9594 [the ISO equivalent of CCITT Recommendation
X.500] refers to The Directory in the singular, and reflects the intention to
create, through a single, unified name space, one logical directory com-
posed of many systems and serving many applications. Whether or not
these systems choose to interwork will depend on the needs of the appli-
cations they support. Applications dealing with nonintersecting worlds
of objects may have no such need. The single name space facilitates later
interworking should the needs change. (ISO/IEC 9594-1: 1990)

In 1988, the first jointly-developed ISO/IEC/CCITT standards for a
worldwide directory system, generally known as “X.500,” were pub-
lished. Although the term X.500 is commonly used to refer to the directo-
ry standards, they in fact consist of eight separate specifications, which
are listed in Table 7.1. (The ISO/IEC 9594 series of standards are refer-
enced in subsequent subsections; refer to this table if you wish to find the

TABLE 7.1 The X.500-Series Directory Standards

CCITT ISO/IEC

Recommendation Standard Title

X.500 9594-1 Overview of Concepts, Models, and Services
X.501 9594-2 The Models

X.511 9594-3 Abstract Service Definition

X.518 9594-4 Procedures for Distributed Operation

X.519 9594-5 Protocol Specifications

X.520 9594-6 Selected Attribute Types

X.521 9594-7 Selected Object Classes

X.509 9594-8 Authentication Framework

DIRECTORIES 123

corresponding subject in an X.500-series Recommendation.)

Work on the directory standards continues as a joint enterprise of

ISO/IEC and CCITT. By the end of 1992, several critical areas of study
were completed, among them:

A model for replication of parts of the directory information base
and, in particular, definition of a standard replication protocol. Hith-
erto, replication protocols used between directory system agents
were proprietary.

A list-based access-control mechanism. The X.500-1988 and ISO/
IEC 9594: 1990 versions of the OSI Directory have well-defined
authentication mechanisms but no standard means of restricting
access to specific parts of the directory information base; thus, any-
one who is currently authorized to use the directory is authorized
to look at everything in the database.

Architecture The principal architectural features of the OSI Directory are:

Decentralized maintenance: Each system providing an OSI Directory
service is responsible for the maintenance and integrity of only its
own local part of the directory information base; wherefore updates
and other management operations can be carried out independent-
ly by “keepers of the directory information,” formally known as
directory system agents.

Structured information model: The OSI Directory defines an object-
oriented model and database schema that applies uniformly to all
the information stored in the directory.

Hierarchical global name space: The hierarchy of distinguished names
depends uniformly from a single, global root, providing a homoge-
neous name space for directory users.

Extensive search and retrieval capability: Directory users may construct
arbitrarily complex queries and perform highly complex interactive
searches of the directory information base.

The X.500 standards define the directory in terms of “models”:

The information model specifies the contents of directory entries,
how they are identified, and the way in which they are organized
to form the directory information base.

The directory model describes the directory and its users, the func-
tional model for directory operation, and the organization of the
Directory.

The security model specifies the way in which the contents of the

124

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

The Directory
Information

Model

directory are protected from unauthorized access and updates to
the directory information base are authenticated.

The information contained in the OSI Directory is organized as a set of
entries; the set of all such entries constitutes the directory information base
(DIB). The entries in the DIB are arranged hierarchically and can be repre-
sented in the form of a tree (the directory information tree, or DIT). The
acronyms DIB and DIT are often used interchangeably;” a useful way to
think about the relationship between the “database” and the “tree” is to
consider that every entry in the database occupies a position in the tree—
the tree therefore expresses the hierarchical relationship that the OSI
Directory defines for the entries in its database, as illustrated in Figure 7.3.

directory directory directory
entry entry entry
directory directory directory
entry entry entry
directory directory
entry entry

(attributeD (attribute) (attribut@

FIGURE 7.3 Structure of Directory Information and of Entries

7. The X.500 standards always refer to the complete set of entries in the directory as
the DIB, reserving the equivalent term DIT for those circumstances in which it is important
to emphasize the hierarchical tree structure of the database.

DIRECTORIES 125

Directory Entries and Attributes The ASN.1 encoding of a directory
entry is:

Attribute ::=

SEQUENCE {
type Attribut eType,
val ues SET OF AttributeVal ue }

AttributeType ::= CBIECT | DENTI FI ER
Attributevalue ::= ANY

Each directory entry consists of a set of attributes, each of which
consists of an attribute type, which identifies the class of information
given by the attribute, and one or more corresponding attribute values,
which are particular instances of that class of information (see Figure
7.4). An entry may not contain more than one attribute of a given type.

What sort of things are attributes? Virtually anything that describes
an object for which a directory entry is created. Some attribute types are

Entry |
Entry |
Entry |
Entry |
Attribute Attribute Attribute

Attribute

Atribute
val ue(s)

Attribute
type

Attributeval ue(s

D st i ngui sheg - -
9 Attribute Attribute
attribute []
val ue val ue
val ue

FIGURE 7.4 Directory Entries and Attributes

126

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

internationally standardized. A set of “selected attribute types,” consid-
ered by the standards committees to be widely applicable, is provided in
ISO/IEC 9594-6: 1990; they include:

* Labeling attribute types: Common Name, Surname, Serial Number

o Geographic attribute types: Country Name, Locality Name, State or
Province Name, Street Address

 Organizational attribute types: Organization Name, Organizational
Unit, Title

 Postal-addressing attribute types: Postal Address, Postal Code, Post
Office Box, Physical Delivery Office Name

o Telecommunications-addressing attribute types: Telephone Number,
Telex Number, Teletex Terminal Identifier, Facsimile Telephone
Number, X.121 address, ISDN Number, Registered Address

o OSI application attribute types: Presentation Address, Supported
Application Context

This is but a sampling. Other attributes are defined by national
administrative authorities or private organizations. For example, it is per-
fectly appropriate to imagine a set of attributes for the medical profes-
sion, including residency or attending physician attributes (where? how
many years? under whom? area[s] of specialization? publications, honors
received, recommendations, evaluations, hours of practice?) and mal-
practice attributes (insurance carrier, annual premium, suits pending,
suits settled). In other words, you can assume that organizations or indi-
viduals can create an attribute type for anything they wish to use to dis-
tinguish an individual or an object from another of its class.

In order to ensure that attribute types are assigned in such a way
that each is distinct from all other assigned types, they are identified by
an object identifier. The syntax (and hence, the data type) of attribute val-
ues for a particular attribute type is specified when the attribute type is
defined.

An attribute value assertion (AVA) is a proposition—which may be
true, false, or undefined—concerning the value(s) (or in some cases, only
the distinguished values; see the following paragraphs) of an entry; it is
usually expressed as a sequence of one or more statements of the form
AttributeType = AttributeVal ue.

Directory Names At most, one of the values of an attribute may be des-
ignated as a distinguished value—in which case, the value appears in the
relative distinguished name (RDN) of the entry. Every entry has a unique
relative distinguished name, which consists of a set of attribute value
assertions (each of which is true) concerning the distinguished values of

DIRECTORIES 127

r oot

O=Dr esher
Gener al
Hospi t al

attributes of the entry. The set contains exactly one assertion about each
distinguished value in the entry. By far the most common case is that in
which an entry has just one distinguished value, and the relative distin-
guished name therefore consists of a single attribute value assertion;
however, this need not always be the case.

The distinguished name (DN) of a given object is defined as the
sequence of relative distinguished names of (1) the entry in the directory
information base that represents the object and (2) All of the entries
superior to it in the directory information tree, in descending order. A
distinguished name can be used as the primitive name (see Chapter 5) of
the object it identifies. Object identifiers can be transformed in a simple
way into distinguished names for access to an X.500-based directory ser-
vice, either by a direct mapping (in which the object identifier value cor-
responds directly to a distinguished name of which the components are
values of a directory attribute of type obj ect -i denti fi er - conponent -
val ue) or by ensuring that object identifier component values are allocat-
ed together with corresponding relative distinguished name values.

Figure 7.5 illustrates the relationship between relative distin-

/C;US\
PA L=MA
O=Tenpl e
Uni versity
Hospi t al

OU=Neur ol ogy QOU=Car di ol ogy OU=Tr auma OJzNeph\r ol ogy

CN=Dr. Medulla

CN=Dr. Ventricle |[CN=Dr. Aort CN=Dr. Doom CN=Dr. Ki dney

Dr. Aorta’s distinguished namne:

country="United States”

I ocal i ty="Pennsyl vani a”

organi zat i onNanme="Tenpl e University
Hospi tal ”

or gani zat i onal Uni t =" Car di ol ogy”

comonNane="Dr Aorta”

FIGURE7.5 The Directory Information Tree

128

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

guished names and distinguished names. Entries at leaves of the tree are
sometimes alias entries. They are pointers to object entries and provide
alternative names for the objects to which they point.

AHE A It is important to recognize that directory distinguished names
are not necessarily user-friendly; user-friendly naming is a
property of the directory service, not of distinguished names per se. Thus, “user-
friendly naming” occurs not as a natural result of the use of directory distin-
guished names but as a consequence of directory user agents making judicious
use of the directory system to ensure that those distinguished names for which
the property of “user-friendliness” is important have it.

Object Classes Conceptually, a family of objects that have in common a
well-defined set of attributes constitutes an object class. Object class defin-
itions provide (detailed) “characterizations” so that individual objects
(object instances) may be associated with a particular object class.
ISO/IEC 9594-7, Selected Object Classes, provides an initial set of object
classes for use in the Directory. As an example, most people can be asso-
ciated with a r esi denti al Per son object class, which is itself a sub-
class of person. A directory entry for a r esi dent i al Per son must con-
tain a locality name attribute and may optionally contain any of the fol-
lowing attributes: a locale attribute set (locality name, state or province
name, street address); a postal attribute set (physical delivery office
name, postal address, postal code, post office box, street address); a pre-
ferred delivery method; a telecommunications attribute set (fax, ISDN,
telex number, etc.); and a business category. Similarly, many people can
be associated with the or gani zat i onal Per son object class; a directory
entry for an or gani zat i onal Per son may contain a locale attribute set,
an organizational unit name, a postal attribute set, a telecommunications
attribute set, and a title (position within the organization).

Role of the Directory Like the Domain Name System, the Directory
plays an important role in name-to-address resolution; in particular, the
Directory may be used to determine the addressing information required
for applications to communicate. Two object class definitions—appl i -
cationProcess and applicationEntity (see Figure 7.6)—allow
directory providers a means to create entries in the Directory to enable
application “lookups” (the usefulness of this service, and the importance
of the attributes of these object class definitions, becomes more apparent
in Chapters 10 and 11).

DIRECTORIES 129

appl i cati onProcess OBJECT- CLASS

SUBCLASS of top

MUST CONTAI N {
comonNarne }

MAY CONTAI N {
descri ption,
I ocal i t yNane,

-- all object classes are subcl asses of “top”

-- a textual description of the application
-- geographi c/ physical |ocation of application

organi zat i onal Uni t Nane, -- unit with which application is affiliated

seeAl so }

-- nane(s) of other directory objects that
-- describe this application

applicationEntity OBJECT- CLASS

SUBCLASS OF top
MUST CONTAI N {
comonNarne,

present ati onAddress } -- see Chapter 5 and Chapter 11

MAY CONTAI N {
descri ption,
I ocal i t yNane,

-- a textual description of the application
-- geographi c/ physical |ocation of application

organi zat i onNane, -- organi zation with which application is affiliated
organi zati onal Uni t Narne, -- unit with which application is affiliated
see Also,

support edAppl i cati onContext } -- see Chapter 10

FIGURE 7.6 applicationProcess and appl i cati onEnti ty Object Class Definitions

The Directory Model

The directory information base is distributed throughout the worldwide
collection of directory system agents that form the OSI Directory. In the
general model, queries are forwarded from a directory user agent, which
acts as the agent for a real user, to a directory system agent, which at-
tempts to satisfy the request. In many instances, a local directory system
agent can do so by using information it maintains in its own local piece
of the directory information base; in cases where the query refers to a
part of the directory database for which the local agent has no informa-
tion, it passes the request to an agent that does (see Figure 7.7).

The organizational mapping and administration of the OSI Direc-
tory follow the model applied to the X.400 Message Handling System
(discussed in Chapter 8). Directory system agents may operate singly or
together as a group to provide a directory service to one or more directory
user agents, under a single administration called a directory management
domain (DMD). If the management domain is operated by a public
telecommunications provider, it is referred to as an administrative directory
management domain, and if the management domain is operated by a
company or noncommercial organization, it is referred to as a private

130

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

The Directory
Service

D rectory The Directory

user agen .
® Drectory | pirectory

\ system system
D rectory agent

pr ot ocol
accesspr ot ocol !
.| Drectory
system

agent

D rectory
system
pr ot ocol

D rectory
system

pr ot ocol Drectory
system

agent

FIGURE 7.7 Directory Model

directory management domain. The organization that administers a directory
management domain is responsible for overseeing the creation and modi-
fication of directory entries in its DSAs, allocating names to entries, and
ensuring the integrity (and privacy, if applicable) of the entry information.

DAHAD L.'SO/IEC 9594-2: 1990 and .the X.SQO Recommgndations' say
little about the rules governing the interconnection of private
and administrative directory management domains. One might assume that the
politics and economics that determined the “correct” methods for interconnec-
tion of publicly and privately administered Message Handling Systems apply to
directory systems as well. Not so. Having learned just how constricting the
guidelines were during the early deployment of X.400, those responsible for the
definition of the X.500 Directory backed off considerably, and generally speak-
ing, providers of OSI Directory services are encouraged to interconnect in what-
ever fashion is most appropriate (and legal within the constraints of particular
national requlations!).

The directory service is provided to users through access points called
ports. Different types of ports exist for different directory services. A
readPort is available for reading attributes of a directory entry, comparing

DIRECTORIES

an attribute of a directory, and canceling a previous directory inquiry. A
searchPort may be used to obtain a list of subordinates of a specified,
named directory and to search the directory information base for the set
of entries that satisfy some filter. Like a “yellow pages” service, this facil-
ity enables a user to get a list of entries that all have a common attri-
bute—for example, all organizational persons having the same organiza-
tional unit name within an organization or all residential persons sharing
the same postal code. Both list and search capabilities of the searchPort
facilitate browsing through the database. The modifyPort provides the
means to add and remove a “leaf” entry from the Directory Information
Base, as well as the means to add, delete, or replace attributes of an exist-
ing directory entry and to modify the relative distinguished name of a
leaf entry. The ASN.1 macros for these ports are shown in Figure 7.8.

directory
CBIJECT
PORTS {

readPort[S], -- the directory is treated as an obj ect
searchPort[S], -- it is asupplier [S of services through

nodi fyPort[g } -- these ports
= id-ot-directory

dua
CBJIECT
PORTS {

readPort [, -- the directory user agent is treated as an obj ect
searchPort[(, -- it is a consumer [Q of the services provided
nmodi fyPort[Q } -- through ports by the directory

;= id-ot-dua

readPor t
PORT {
CONSUMER | NVOKES {
Read, Conpare, Abandon }
;= id-pt-read

sear chPor t
PORT {
CONSUMER | NVOKES {
Li st, Search }
;= id-pt-search

nodi f yPor t
PORT {
CONSUMER | NVOKES {
AddEntry, RenoveEntry,
Modi f yEntry, Modi f yRDN }}
= id-pt-nodify

FIGURE 7.8 ASN.1 Macros for the readPort, sear chPort, and nodi f yPort

132

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Directory System
Agent Interaction

To access the Directory, a directory user agent binds to one of the
types of ports offered on behalf of an end user. The BIND ASN.1 macro is
used to create an association (see Chapter 10) between the Directory and
the local directory user agent. To execute a bind operation, an end user
indicates the type of port needed and may be required to provide creden-
tials; these may be as simple as the user name, or the directory service
may require that the user provide stronger credentials, which can be
employed to authenticate the user (see “Directory Security Model,” later
in this chapter). If the bind operation is successful, the user may perform
any of the remote operations available through the port type requested.

Using the read operation, for example, the user may specify as an
argument to the remote operation an object name from which information
is requested (e.g., the name of a residential person) and a selection of infor-
mation that is associated with that name (e.g., the name of the locality in
which the person resides). The result expected from the read is the selected
entry information; unexpected results (e.g., errors resulting from the incor-
rect specification of attributes or violation of an access control in the read
request) are also accommodated via the read remote operation.

Once a user no longer requires the services of a port, he or she uses
the unbind operation to release the association between the Directory and
the directory user agent that provided access to the Directory.

ISO/IEC 9594-4, Procedures for Distributed Operation, describes a framework
within which directory system agents may work cooperatively to provide
wide distribution of information maintained in the directory database.
(Here, each DSA that works in cooperation with other DSAs to provide a
directory service is modeled as a single object, and the Directory is mod-
eled as a set of objects.) In circumstances where a directory system agent
does not have the information requested by an end user locally available,
the agent may use chained service ports to communicate with other DSAs
and “pass a request” to another DSA.2 The chained service ports offer
DSAs the opportunity to use chaining, in which the local DSA, in effect,
puts the user “on hold” while it communicates with another DSA to find
the requested information, which it then passes back to the user; or referral,

8. Although the directory standards admit to the need to replicate information among
DSAs, the current ISO and CCITT X.500 standards do not define protocols to support repli-
cation, nor do they describe the methods for keeping replicated information current; these
are expected in the 1992 extensions (see also Radicati [1992]). During the interim, OSI direc-
tory implementations have resorted to proprietary means of propagating information as
well as managing how to distribute information or “knowledge” about how directory
information has been distributed / replicated.

DIRECTORIES 133

in which the DSA responds to the user’s request immediately with a mes-
sage to the effect that “I can’t answer your question, but here is the name
of a DSA that can—go talk to that DSA yourself.” A third form of DSA-
DSA interaction, multicasting, is effectively an extension of chaining; it
allows a DSA to issue the same request to multiple DSAs, either simulta-
neously or sequentially. The ASN.1 macros for the refinement of the DSA
directory object to include these ports are shown in Figure 7.9.

The chai nedRead, chai nedSear ch, and chai nedMbdi fy ports
complement the read, search, and modify ports in DSAs but are only

DirectoryRefinenent ::= REFINE directory AS
dsa RECURRI NG
readPort[S], VISIBLE -- the DSA provides this port to
DUAs
searchPort[S], VI SI BLE --the DSA pro-

vides this port to DUAs
nodi fyPort[S] VISIBLE--the DSA provides this port to

DUAs

chai nedReadPor t PAIRED W TH dsa -- provided to DSAs
only

chai nedSear chPort PAIRED WTH dsa -- provided to DSAs
only

chai nedModi fyPort PAIRED WTH dsa -- provided to DSAs
only
dsa

OBJECT
PORTS {
readPort[9],

searchPort[S],

nmodi fyPort[S],

chai nedReadPort,

chai nedSear chPort ,

chai nedModi fyPort }
;= id-ot-dsa

chai nedReadPor t
PORT {
ABSTRACT OPERATI ONS {
Chai nedRead, Chai nedConpare, Chai nedAbandon
1}

;1= id-pt-chai ned-read

chai nedSear chPor t
PORT {
CONSUMER | NVOKES {
Chai nedLi st, Chai nedSearch }}
;1= id-pt-chai ned-search

FIGURE7.9 ASN.1DirectoryRefinement Macros

134

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Directory
Protocols

Directory
Security Model

supplied to other DSAs (and not to directory user agents). The distrib-
uted aspects of the directory model are illustrated in Figure 7.10.

The interaction between DSAs is similar to the DUA-DSA interac-
tion. DSAs use a DSABi nd operation to establish an association with
other DSAs, then make use of the services provided through the chained
port type—chained read, search, modify—to which they have been
bound. When a DSA has completed use of a chained port, it releases the
association using a DSAUnbi nd.

The OSI Directory standards define a protocol for communication be-
tween a directory user agent and a DSA (the directory access protocol
[DAP])? and a protocol for communication among peer DSAs (the direc-
tory system protocol [DSP]); these are defined in ISO/IEC 9594-5,
Protocol Specifications. The protocols are described in terms of the remote
operations the user agent and system agent may perform. Specifically,
the directory access protocol is defined in terms of three application ser-
vice elements—the r eadASE, sear chASE, and nodi f yASE—which are
consumers of the corresponding operations shown in Figure 7.8. The
directory service protocol is defined in terms of three other application
service elements—chai nedReadASE, chai nedSear chASE, and
chai nedModi f yASE—which are consumers and suppliers of the corres-
ponding operations shown in Figure 7.9. Figure 7.11 illustrates the way
in which these elements are related by the directory protocol model.

The directory security model provides for both authentication services
and access control. Authentication services are provided to verify the ini-

The Directo
Drectory
system
agent

Drectory

Drectory
user agent

system
chai nedRead agent
chai nedSear ch

read

search
modi fy chai nedModi fy
Servi ceport Chai ned servi ce por

FIGURE 7.10 Distributed Directory Model

9. Note that in cases where a directory user agent and directory service agent are located
in the same system, use of the DAP may not be necessary.

DIRECTORIES 135

/—(TheD rect ory)ﬁ

- D rectory G rector
Host Drectory access protocdl y
user agen, syst empr ot oco
Drectory
syst emagefr
DAP
Host DUA

FIGURE 7.11 The Directory Protocol Model

tiator of a directory request; access controls are provided to keep parts of
the directory information base private from directory users who have
not been given the privilege of accessing that information. ISO/IEC
9594-8: 1990, Authentication Framework, provides for two levels of authen-
tication. A simple authentication uses a password mechanism to verify the
identity of a directory user, whereas a strong authentication uses crypto-
graphic mechanisms based on a public-key encryption cryptosystem
(Diffie and Hellman 1976). The strong authentication specified for the
Directory may be used in both the directory-access and system protocols
to authenticate the initiator of a request as well as the responder to a
request. This is useful in protecting against identity interception, mas-
querading, and replay. A basic access control—one in which access to
directory entries, attributes, or attribute values of an entry can be con-
trolled—is specified in the 1992 version of X.500 and post-1990 revisions
to ISO/IEC 9594.

The Relationship Between the OSI Directory and Message
Handling Services
The most immediate consumer of the services of a global OSI Directory

is the X.400 Message Handling System (see Chapter 8). The Message
Handling System requirement for a directory service, which was implied

136

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

but not stated in the 1984 version of the X.400-series Recommendations,
is explicit in the 1988 and later versions. In the 1984 version, the origina-
tor/recipient (O/R) name used to identify the sources and destinations of
mail messages could be only one thing: an O/R address. In the 1988 and
later versions of the standard, an O/R name can be either an O/R
address (as before) or a directory name (that is, a distinguished name in
the context of the X.500 Directory). The 1988 and later versions require
that a directory service be either directly or indirectly accessible to the
message transfer systems of a message handling system.

A message handling system is likely to make use of a directory sys-

tem for at least the following services:

 User-friendly O/R names: If the O/R names for mail users may only

be O/R addresses, users must deal directly (and frequently!) with
lengthy, cumbersome, and pedantic strings such as

/ c=us/ adnd=nti nai | / pr nd=ner nc/ o=bbn/ s=Chapi n/ g=Lyman.
If, on the other hand, a relative distinguished name in the Directory
may be used as an O/R name, then mail users may deal directly
with much friendlier (for one thing, shorter!) strings, such as
“Lyman Chapin” (a clear improvement). In this example (and
assuming that the Directory has been properly configured to place
the “Lyman Chapin” relative distinguished name at the appropriate
place in the directory information tree), a distinguished name entry
would appear in the directory for c=us@=ner nc @u=bbn@
commonName=Lyman Chapi n, which can be transformed in a
straightforward (and standardized) way into an O/R address.
Expansion of distribution lists: When multiple recipients of electronic
mail are combined in a distribution list, the name of the list can
appear as the O/R name in a mail message. The Directory can be
employed to support the use of a user-friendly directory name,
rather than an O/R address, for a distribution list, in the same way
as it supports the use of directory names for individual message
recipients. It can also be used to support the expansion of a distri-
bution list by the message transfer agents responsible for it, since
the Directory can store all the O/R addresses for the message recip-
ients included in a distribution list under the single relative distin-
guished name of the distribution list.

Message Handling System user searches: A Message Handling System
user who lacks sufficient information about a message re-cipient to
properly address a message may—outside of the Message Handling
System itself—use the search capabilities of the Directory to find the
missing information (for example, the recipient’s full “common

DIRECTORIES 137

name”) based on whatever partial information the user may have
(such as, perhaps, the recipient’s first name and phone number).

The components of the X.400 Message Handling System use the
Directory in the same way as any other Directory user; there are no spe-
cial protocols linking X.400 components to X.500 DUAs or DSAs. The
directory service required by the 1988 and later X.400 standards need not,
therefore, be provided by X.500, nor indeed by any “global” directory.
Each Message Handling System component deals with a local DUA or
DUA equivalent, and no formal coupling between the Message Handling
System and the Directory is required as a matter of conformance to the
standards.

The OSI Directory in the Internet

PARADISE

The X.500 Directory is potentially far more powerful and comprehensive
than the patchwork combination of host s. t xt files, Domain Name
System, and other information services and locators that are currently
used to perform directorylike functions in the Internet. Since the ap-
proval of the 1988 X.500 Directory Recommendations, there has been
considerable interest in the use of the OSI Directory in the TCP/IP
Internet.l® A very large number of “pilot” projects—experiments in the
use of the OSI Directory service in the Internet—are today operational
and interconnected. They share a common global r oot directory main-
tained at the University of London Computer Centre by the PARADISE
project.

PARADISE, the COSINE X.500 Directory service pilot, was launched in
November 1990 to coordinate an international directory service for the
European research and development community. PARADISE provides
some services itself, such as a user interface to the directory service, and as of
November 1991, also serves as a link between national pilots in the 18 coun-
tries that are participating in COSINE. PARADISE is managed by University
College, London, and involves the University of London Computer Centre,
X-Tel Services, and a group of public service providers, including PTT
Telecom in the Netherlands, PTT Switzerland, and Telecom Finland.

10. The use of the term TCP/IP Internet here is intentional; it refers to the use of the OSI
Directory to maintain information about the traditional TCP/IP protocol suite in the
Internet, in addition to its use to maintain information about OSI protocols that may be
supported by a multiprotocol Internet.

138 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

One of the PARADISE services is a public-access interface to the
Internet OSI Directory system. The interface, called “de” (for “directory
enquiries”), is distributed with ISODE (the ISO Development Environ-
ment) releases 7.0 and later. Users of “de” can find information about
people and organizations that are listed in the directory, using a query
model that supports approximate matching and a variety of “wild
cards.” Users can also list entries in the Directory—people within a
department, departments within an organization; organizations within a
country, or countries represented in the Directory.

The public-access interface is easy to use. Users with access to the
Internet can use TELNET to connect to the host par adi se. ul cc. ac. uk.
A sample interactive session is shown in Figure 7.12. (Note that user-
entered text is in bold typeface.)

SunGS UNI X (found. paradi se. ul cc. ac. uk)

| ogi n: dua
Last login: Thu May 28 17:46:52 from 134. 246. 150. 51
SunCS Rel ease 4.1.1 (DUA) #4: Tue Apr 21 11:37:06 BST 1992

Wel come to PARADI SE - the COSINE Directory Service

Connecting to the Directory - wait just a nonment please ...

You can use this directory service to | ook up tel ephone nunbers and el ectronic mai
addresses of people and organi sations participating in the Pilot Directory Service
You will be pronpted to type in

On-

the NAME of the person for whom you are seeking infornation
t heir DEPARTMENT (optional),

the ORGANI SATI ON they work for, and

the COUNTRY in which the organisation is based.

line HELP is available to explain in nore detail how to use the Directory Service.

Pl ease type ?INTRO (or ?intro) if you are not famliar with the Directory Service

? for HELP with the current question you are being asked
?? for HELP on HELP
q to quit the Directory Service (confirmation asked unless at the
request
for a person’s nane)
Control -C abandon current query or entry of current query

Person’s nane, q to quit, * to browse, ? for help

p kirstein

Departnent nane, * to browse, <CR> to search all depts, ?

for help

Organi sation name, * to browse, ? for help

uni v | ondon

Country name, * to browse, ? for help

uk

Uni ted Ki ngdom

DIRECTORIES

139

Cot the follow ng approxi mate matches. Pl ease select one fromthe list by typing the

nunber
corresponding to the entry you want.

Uni ted Ki ngdom
1 Brunel University
2 University Col |l ege London
3 University of London Conputer Centre
Organi sation nane, * to browse, ? for help
- 2
Uni ted Ki ngdom
Uni versity Col | ege London
Conput er Sci ence
Peter Kirstein

description Head of departnment

t el ephoneNunber +44 71-380-7286

el ectronic nail P. Ki rstei n@s. ucl . ac. uk
favouriteDrink not while on duty
roomNunber Q1

X. 400 mai | address /1 =P/ S=Ki r st ei n/ QU=cs/ O=ucl /
PRVD=UK. AC/ ADND=GCOLD 4

00/ C=GB/

Person’s nane, q to quit, <CR> for ‘p kirstein', * to browse, ? for help

FIGURE7.12 Sample PARADISE Interactive Session

X.500
Implementations

Interoperability among X.500-based directory systems is primarily a mat-

ter of lineage; the many different systems deployed in the Internet today
are the direct descendants of just a handful of original implementations.
The most widely used implementation of the OSI Directory is called
QUIPU (Hardcastle-Kille 1992), originated from University College,
London, a product of the Integrated Network Communication Architec-
ture (INCA) project. A rival X.500 implementation, developed at the
Institut National de la Recherche en Informatique et Automatique
(INRIA) in France under the auspices of the ESPRIT project Thorn, is

called, not coincidentally, “Pizarro.”

A list of currently available implementations of X.500-based direc-
tory systems, with particular emphasis on implementations that are
designed to operate in the Internet TCP/IP environment, is contained in

RFC 1292, A Catalog of Available X.500 Implementations.

Other Internet Directory Utilities

140

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

WHOIS

FINGER

Only two of the formal directory services and their application in the
Internet have been discussed thus far. These services are relatively new.
In the rich history of the Internet, two earlier directory applications—
WHOIS and FINGER—are noteworthy, as they represent earlier attempts
at providing “name-to-attribute” services.

The WHOIS service supports a limited form of name-to-attribute map-
ping for IP networks and IP network administrators in the Internet. It is
primarily used by system postmasters or other administrators to find the
“point of contact” for an Internet site. A centralized WHOIS database is
maintained by the Internet’s Network Information Center at host ni c.
ddn. m | . WHOIS servers are also distributed throughout the Internet
wherever individual sites choose to run the BSD “whois” program for
access to local and/or remote WHOIS databases. WHOIS (formally,
“NICNAME /WHOIS”) is specified by RFC 954 (1985).

X5WHOIS, developed as part of the FOX project,'! is a variant of
the WHOIS server program that provides access to information in the
@-=I nt er net @u=WHO S subtree of the X.500 Directory. (One of the
activities associated with the deployment of X.500 pilots in the Internet
has been to load the contents of the NIC’s master WHOIS database into a
subtree of the Internet X.500 directory.) SRI International, in Menlo Park,
California, provides a public-access X5WHOIS server that may be
reached in one of two ways:

1. Through the regular BSD whoi s program:
% whois -h inic.nisc.sri.com<search string>

2. Through TELNET toi ni c. ni sc. sri.com
log in as x5whoi s (no password) and type one-line <sear ch
string>s

The X5WHOIS server looks like a normal directory user agent to
the X.500 Directory and uses the standard X.500 directory access pro-
tocol to query X.500 DSAs with the user-supplied <sear ch stri ng>.

The FINGER protocol (formally, “NAME /FINGER”) is specified in RFC
1288, updated in December 1991. The FINGER protocol has been imple-
mented for UNIX systems (i.e., the fi ngerd daemon), and for a small
number of non-UNIX systems, to provide an informal (and highly idio-

11. FOX—Field Operational X.500—is a pilot X.500 directory project funded jointly by
the Department of Energy (DOE), the National Aeronautics and Science Agency (NASA),
the National Science Foundation (NSF), and DARPA; coordinated by USC/ISL; and operat-
ed jointly with Performance Systems, Inc., Merit, Inc., and SRI International.

DIRECTORIES 141

syncratic) mechanism for discovering information about a user logged in
on a local or remote Internet host. When invoked on one host—with, for
example, the command line fi nger dave@rail . bel | core. com—it
returns information about “Dave Piscitello” obtained from the remote
host’s mai | operating system and (optionally) from that user’s . pl an
and . pr oj ect files:

[Mail]
Logi n name: dave Inreal life: Dave Piscitello

Gfice: 1C322, x2286 Horre phone: n/a

D rectory: /uldave Shel | : /bin/ksh

Last login: Tue Apr 7 10:12 on type fromthunper. bel | core.com
Project: all manner of fast packet technol ogi es

Pl an: to nmake public networks a “safe space” for datagrans

The usefulness of this service is severely limited by the fact that one
must already know a person’s user name and host name in order to
obtain information from FINGER; by the fact that few non-UNIX sys-
tems support the service; by security concerns, which cause many site
administrators to disable it; and by the very restricted query model,
which supports FINGERing only a specific user on a specific host.

Resource Location

The proliferation of information that is stored “somewhere in the Inter-
net” has promoted a familiar problem to the top of many current net-
working research agendas: how does one locate the specific information
that one needs? A directory service can help to identify the potential
sources of information, but it is impractical to construct a directory that
is both efficient in the performance of its principal task (that of mapping
various identifiers, such as mail user names, to a list of attributes, such as
the address of the mail transfer agent to which mail for that user name
should be forwarded) and capable of processing complex, incompletely
specified queries such as “Where can I find information about research
on low-temperature fusion in Great Britain since 1991?”

As the library science community discovered the convenience and
boundless opportunities associated with the networking of libraries, the
new field of networked information retrieval—the term generally used for

142

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Archie

Wide Area
Information
Service

the problem of locating and retrieving information resources that are
accessible by means of a network—was born. The authors can only
scratch the surface here, but the following projects are particularly inter-
esting examples of the way in which systems designed to discover “infor-
mation about information” far beyond the capabilities of traditional
directories have been designed.

Archie (a play on the word archive) began as a project at McGill University
to address the problem of how to quickly and easily scan the offerings of
the already bewildering and rapidly growing number of anonymous FTP
sites scattered around the Internet. The current system—which is acces-
sible through an interactive TELNET session,!? by electronic mail, and
through command-line and X-window clients—accepts queries such as
“Where can I find the following file . . . ?” and returns a list of anonymous
FTP archives that contain the named file; for example, the request

% archi e rfc-index.txt

returns the host names and directory locations where the r f c-
i ndex. txt file resides, i.e.,

Host nic.ddn. ml
Location: /rfc
FILE -rwr-r- 20166 May 28 1992 rfc-index. txt
Host nnsc. nsf. net
Location: /rfc
FILE -rwr-r- 20224 May 28 1992 rfc-index. txt

and so on. (There are a fairly large number of Internet sites that maintain
a copy of ther f c-i ndex. t xt file!)

The shortcomings of such a service are obvious: it searches only for
specific file names (and you have to know the exact name of the file—
“fuzzy” matches are not supported), and it searches only Internet anony-
mous FTP archive servers. It is, however, a dramatic improvement over
nothing at all.

The goal of the Wide Area Information Servers (WAIS) project is to facili-

12. There are public-access Archie servers all over the Internet, including:

ar chi e. ncgi | 1. ca (the first Archie server, at McGill University in Montreal)
archi e. funet. fi (in Finland)

ar chi e. ans. net (in New York)

ar chi e. au (in Australia)

ar chi e. doc. i c. ac. uk (in the United Kingdom)

ar chi e. rut ger s. edu (at Rutgers University in New Jersey)

DIRECTORIES 143

WorldWideWeb

tate the growth of a distributed system of information servers and clients
based on the ANSI standard bibliographic search and retrieval protocol
(ANSI Z39.50-1988). WAIS is a much more ambitious undertaking than
Archie; it is a general-purpose search and retrieval system with two sig-
nificant characteristics:

1. It uses the standard Z39.50 protocol to search documents and docu-
ment indexes stored in a wide variety of repositories (not just
Internet anonymous FTP archives).

2. It supports a unique, user-oriented search model that closely
matches the searching strategy with which people are already
familiar: (a) start with a few key words or phrases; (b) see what
WALIS retrieves; (c) tell WAIS which of the retrieved articles, or sec-
tions of articles, are most relevant to the subject of your search and
ask it to search again using your selections as models; and (d)
repeat the process until you’ve found what you want.

The “search from a good example” strategy makes WAIS a very
powerful tool, since it not only provides appropriate feedback to the user
during the search but also permits the scope or even the original purpose
of the search to be changed, iteratively and interactively, as the search
proceeds. WAIS also has a built-in accounting system: the client search
screens include an explicit “cost” field, which presents both a statement
of what it costs (or would cost) to make a particular query and a running
decremented count of “how much money you have left.”

WALIS uses Z39.50 over TCP/IP, modem, OSI, and other networks;
the motivation for using a standard protocol is to eventually be able to
work with a wide variety of standard bibliographic search and retrieval
systems that are being developed by the library science community. It
was originally developed at Thinking Machines Corp. in Cambridge,
Massachusetts, by Brewster Kahle, who turned it over to the WAIS
Clearinghouse at the nonprofit Center for Communications Research at
Research Triangle Park near Charlotte, North Carolina.

A simple WAIS public-access interface is supported by the NSFnet
Network Services Center; connect using TELNET to nnsc. nsf. net and
log in as wai s, with no password.

The “WorldWideWeb” project is an ambitious attempt to make all on-
line information readily accessible to users as a “web” of documents and
links among them. It was originally developed in 1989 by Tim Berners-
Lee, Robert Cailliau, and Jean-Francois Groff at CERN for use by the
high-energy physics community but has expanded far beyond its origi-

144

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

nal target audience.

The goal of WWW is to merge the techniques of “hypertext,” in
which links between pieces of text (or other information, such as video
frames) emulate human associations among related ideas, and text re-
trieval, which allows associations to be formed based on the content of
text or other information media.

WWW “browsers,” as the client interfaces are called, are designed
to make it easy for users to pursue the links that are displayed from cur-
rent information to other information, as this example from a simple line-
mode browser illustrates:

WRLD WDE WEB

The Wrl dWdeVWb (VB) is a wi de-area hypermedi af 1]
information retrieval initiative aimng to give univer-
sal access to a large universe of docunents.

General Project Infornation

See al so: an executive summary[2] of the project,
Mailing lists[3] you can join, Policy[4] , latest VW8
news[5] , Frequently Asked Questi ons| 6]

Proj ect Status[7] A list of project conponents and
their current state. (e.g. Line
Mbde[8] , X11 MViola[9] , X11
Erwi se[10] , NeXTStep[11] ,
Daenon[12])

Peopl e[13] A list of some people involved in
the project.

Bi bl i ogr aphy[14] Paper docurentation on V8 and ref -
erences.

H st ory[15] A summary of the history of the
proj ect.

How can | hel p[16] ? If you would like to support the
web.

1-29, Back, <RETURN> for more, Qiit, or Help:

Wherever a link exists to related information (shown, in this exam-
ple, as square-bracketed numbers), the user can follow the link by typing
the number at the prompt; other browsers use a “point and click” inter-
face, which would show links by highlighting the words or phrases to
which they were attached (rather than by assigning a number to them, as
in the terminal-oriented interface used for this example).

DIRECTORIES 145

Conclusion

The Domain Name System is used in the Internet today principally to
perform a mapping from some form of name to an Internet (IP) address.
As the Internet evolves to a multiprotocol environment, it is desirable
that the DNS and/ or other directory systems evolve to a system in which
the information returned by a name-based query includes multiprotocol
(not just IP) addresses, other names, security parameters, protocol-stack
information, and other “attributes.” The desire to generalize DNS is
quickly tempered by the realization that the basic “name-to-address”
translation is a fundamental and real-time operation, that it lies in the
critical path for real-time applications, and that it cannot be generalized
at the expense of efficiency. By contrast, the “name-to-arbitrary-object/
attribute-list” translation is not as time-critical, and the OSI Directory
accommodates this aspect of directory services nicely, with the potential
for providing a platform for many if not all of the information and
resource locators mentioned earlier. One of the issues the Internet com-
munity faces as the Internet becomes ever more multiprotocol in nature
is how to evolve DNS alongside X.500 Directory services. DNS simply
can’t—and won’t—go away: the fact that the X.500 architecture does not
currently break out the two different classes of “directory” capability
nicely makes it difficult to “simply use X.500” in situations in which a
name must be matched with an Internet address very quickly. The DNS,
however, is expanding to accommodate OSI network addressing, and
although it is easy to speculate how X.500 might evolve so that it serves
two different purposes—real-time name-to-address translation (the func-
tion of the DNS) and non-real-time white pages and yellow pages ser-
vices (both to human users and to distributed-system applications)—it
appears that both directory applications will play important roles in the
Internet.

OPEN SYSTEMS
MESSAGING:
ELECTRONIC MAIL

“E-mail”—the ability to send and receive the electronic equivalent of writ-
ten correspondence typically delivered through a postal agency—is the
most popular and powerful distributed application in use today. It is used
for personal correspondence; with the creation of mailing lists, it is used
for electronic “conferencing” and it can be used to post large documents
to mailing lists for review. In many cases, it is a convenient alternative to
file transfer. For those individuals who have no other file-transfer mecha-
nisms available—i.e., those who may have only terminal access to a net-
work—this form of messaging is not only convenient, it is an essential
means of acquiring electronic documentation.

The postal service is the obvious paradigm for electronic mail: one
composes mail, places it in an envelope, addresses the envelope, and
passes it to a postal handler—a carrier, a mailbox, or a postal worker sta-
tioned at a service window in a post office. The postal handler is one of
many “handlers” in the postal delivery system who will attempt to deliver
the mail to the addressee identified on the envelope. Both OSI and
Internet mail follow this basic model, although the mechanisms, proto-
cols, and message formats of the two mail systems are different.

What is “mailed” through a postal service is not limited to personal
correspondence; in addition to letters, people mail bills, invoices, and
other business “forms”; photographs; books and catalogs—in short, all
sorts of “stuff.” Similarly, electronic mail has evolved from the basic trans-
fer of textual mail messages to encompass a variety of electronically
encoded messages, including facsimile, graphic images, office documents
and forms, digitized voice, telex, and potentially even more. The OSI
Message Handling System and the Internet’s Simple Mail Transfer

147

148 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Protocol (SMTP) with recently defined extensions make electronic mail a
powerful medium as well.

OSI Message Handling System (X.400 MHS, MOTIS)

The OSI Message Handling System is defined in the CCITT X.400 series
recommendations; the ISO standards reference MHS by the less familiar
name Message-Oriented Text-Interchange System (MOTIS) (ISO/IEC 10021:
1990, in many parts). They describe essentially the same functional
model: a distributed system that provides end users with the ability to
send and receive electronic messages.!

The distributed system that comprises the OSI MHS has the follow-

ing functional entities:

An end user, identified by an originator/recipient name (O/R
name). The end user employs the message handling service to com-
pose, send, and receive messages.

A user agent (UA), an entity that provides an end user with the abili-
ty to compose and send messages and also delivers messages to an
end user. User agents typically offer some form of local message
“management” as well—that is, an end user is customarily provided
with the ability to store copies of messages sent/received locally
(i.e., in folders, or directories, for subsequent retrieval) and to re-
ceive notifications that mail has arrived (the notorious bi ff y in
UNIX).

Message transfer agents (MTAs), which forward messages from the
originator to the recipient UAs. Where circumstances prevent the
immediate delivery of a message to a recipient, MTAs often provide
temporary storage of messages and will repeatedly attempt to
deliver a message for some predetermined period of time. (There-
after, the message will be discarded, and the mail system will at-
tempt to notify the originator of the failure.) The conceptual model
for “store-and-forward” messaging is illustrated in Figure 8.1.
MTAs combine to form the message transfer system (MTS), and the
distributed system composed of the UAs and MTAs is the Message
Handling System (MHS). (See Figure 8.2).

1.

ISO/IEC 10021 and the 1988 CCITT X.400 Recommendations are nearly identical.

The earlier model for message handling services X.400-1984 is now obsolete; however, as
there remain many implementations of the 1984 version in use today, both are described

here.

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 149

Ly

The user ag@n é h
\ Message
N Headi ng
and Message Messagest or e
sal utation content
Text nessage The nessage
5B / transfer syst¢

Subnmi ssi onand
del i veryprotoco| s
Envel ope Deliver inmediat
G J

FIGURE 8.1 Store-and-Forward Messaging

In the early X.400 (1984) model of an MHS, the user agents operate at
a sublayer above the MTAs, as follows. A mail originator (mail user X in
Figure 8.3) calls upon a user agent (application) to compose a mail message
to mail user Z. The UA application provides mail user X with prompts,
menus, etc., that enable X to compose a message, in the process providing
the UA with information essential for the preparation of an interpersonal
message (IPM); i.e,, X provides both heading information (to, from, subject,
carbon copy, blind carbon copy) and body information (an ASN.1-encoded
text message, accompanied perhaps by an ASN.1-encoded facsimile).

Message Handl i ng Syst em

Message Tr ansf er Syster
Mai | Mai |
o UA [~——| MTA [—| MTA l—iUA |~
User User
Mai | Mai |
H| UA [«l—B| NMTA [e—P MTA [— - {UA [
User User

Source: Data Communication Networks Message Handling Systems: X.400 (1984)
FIGURES8.2 MHS Model

150

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Mai | user X

Mai | user Z

" m) o

A |-

| nt er per sona | nt er per sona
message message
pr ot ocol pr ot ocol
(f) (T)
G
& IS
User T User
Agent Agent
7 | J N |)
Subni ssi on Subm ssi on
anddel i very anddel i very
pr ot ocol pr ot ocol
(P3) (P3)
4 + |)
Message Message
Transf er Message Transf er
Agent transfer Agent
pr ot ocol
(P1)
-y
_ Message Transfer Sy)

FIGURE 83 MHS Protocol Architecture (1984 version)

The message is communicated from the UA invoked by X to the UA
that provides mail service to mail user Y through the use of the interper-
sonal messaging protocol (P2) (CCITT Recommendation X.420 [1984], [see
ISO/IEC 10021: 1990]). The ASN.1-encoded header of this message (see
Figure 8.4) is very nearly self-explanatory (comments in addition to those
found in the X.420 recommendation have been added for clarification
where needed). The body of an IPM may have multiple parts (see Figure
8.5), each distinguished by an indication of its type. Since the body types
represent different electronic media, the OSI Message Handling System
is often referred to as providing “multimedia” mail capabilities.

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 151

Headi ng :
| PMessagel d,

ori gi nator

Aut hori zi ngUser s

pri mar yReci pi ents

copyReci pi ents

names)

bl i ndCopyReci pi ents

names)

i nRepl yTo
refers

obsol et es
crossRef erences
subj ect
expirybDate

repl yBy

repl yToUsers

nessage
i mportance

sensitivity
aut of or war ded

ly

1= SET {

-- a uni que and unanbi guous nessage identifier, contains a
-- PrintableString and may include an O R nane
[0] IMPLICIT ORDescriptor OPTI ONAL,

-- the name of the nmessage sender; e.g., a mil
[1] I'MPLICIT SEQUENCE OF ORDescri ptor OPTI ONAL,

-- only if not the originator

user X's O R nane

[2] IMPLICIT SEQUENCE OF Reci pi ent OPTI ONAL,
[3] IMPLICI T SEQUENCE OF Reci pi ent OPTI ONAL,
-- alist of other folks who are to receive this IPM(nore QR
[4] I'MPLICIT SEQUENCE OF Reci pi ent OPTI ONAL,
-- alist of other folks who are to receive this IPM(nore QR

-- but whose
-- other recipients

[5] IMPLICIT | PMessagel d OPTI ONAL,

-- the message identification of the message to which this |IPM

[6] I'MPLICIT SEQUENCE OF | PMessagel d OPTI ONAL,

-- the nmessage identifiers of any nessages this | PMrenders

-- obsolete

[7] I'MPLICI T SEQUENCE OF | PMessagel d OPTI ONAL,

-- the message identifiers of any messages this | PMreferences
[8] CHO CE {T61String} OPTI ONAL,

[9] IMPLICIT tinme OPTI ONAL,

-- represented as UTCTine, the date/timestanp beyond which the
-- delivery of this nmessage becomes neaningl ess

[10] IMPLICIT time OPTI ONAL,

-- represented as UTCTIME, the date/tinmestanp beyond which a
-- reply to this nmessage i s nmeaningl ess

names shoul d not appear in the heading delivered to

[11] I MPLICI T SEQUENCE OF ORDescriptor OPTI ONAL,

-- alist of folks who should be included in any reply to this
[12] IMPLICIT INTEGER { | ow(0), normal (1), high(2) }

DEFAULT nor nal ,

[13] IMPLICIT | NTEGER { personal (0), private(l),

conpanyConfidential (2) } OPTI ONAL,
[14] 1 MPLICI T BOOLEAN DEFAULT FALSE
-- an indication that this nessage has been forwarded automatical -

-- by the MHS to the addressee “del egated” to receive this mail

}

(Source: Adapted from X.420 (1984), Interpersonal Messaging User Agent Layer)

FIGURE 84 ASN.1 Encoding of an Interpersonal Message
BodyPart ::= CHO CE {

[0] IMPLICIT I ASText,

-- vanilla ASCI| strings of characters

[1] IMPLICIT TLX,

-- 5-bit code assignments of
[2] IMPLICIT Voi ce,

-- bit string representing digitized voice

[3] IMPLICIT G3Fax,

-- a page count, followed by a sequence of bits,
-- page of a group-3 facsimle

I TA2 for conveying telex info

each representing a

152

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

[4] IMPLICIT TIFO,

-- a docunent encoded according to T.73 text-interchange format
-- (used by group-4 fax class-1 term nals)

[5] IMPLICIT TTX,

-- body part is a teletex docunment (sequence of T61 charstrings)
[6] IMPLICIT Videot ex,

-- body part is a videotex docunment (T.100- or T.101-encoded)
[7] NationallyDefined,

[8] IMPLICIT Encrypted,

-- a body part that has been subjected to encryption

[9] IMPLICIT Forwardedl PMessage,

-- a body part where an | PM has been subsunmed within an | PM
[10] I MPLICI T SFD,

-- character-encoded information organi zed as a sequence of

-- paragraphs, the details of which are specified in COTT

-- Recommendation X 420, called a “sinple formatted docunent”
[11] IMPLICIT TIF1

-- a docunent encoded according to T.73 text-interchange format

(used by group-4 fax class-2 and -3 terminals)

(Source: Adapted from X.420 (1984), Interpersonal Messaging User Agent Layer)

FIGURE 8.5

IPM Body Types

Continuing with the example in Figure 8.3, the UA invoked by mail
user X logs onto a message transfer agent and submits the interpersonal
message through a series of service requests. Using the abstract LOGON
service, the user agent provides the MTA with the name of the mail origi-
nator and a password to validate the UA. (In some electronic-mail appli-
cations, the end user provides log-on information once, at application
start-up.) Once validated, the user agent invokes the message-submission
service (SUBMIT) to transfer messages to one or more recipients. In prac-
tice, the detailed operation of the message-submission service is hidden
from the end user. Although user interfaces differ across E-mail applica-
tions, many offer a menu of mail-creation operations (create new message,
forward message, reply to message, attach file); once a message is com-
posed, the user may queue it for submission or send it immediately, often
by the simple act of hitting a “send” key or clicking on an equivalent “but-
ton.” The E-mail application composes the information needed to submit
the message to the message transfer system for the mail user (recipient,
message content and content type, options such as deferred delivery time,
priority, and delivery notice). If the MTA is remote from the UA—i.e., the
UA cannot communicate with the MTA via a local (Interprocess commu-
nication) interface—the interpersonal message is forwarded to the MTA
in a submi ssi onEnvel ope, one of a set of message protocol data units

2. At the time of publication of the X.400 (1984) Recommendations, the application-

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 153

(MPDUs) of the submission and delivery protocol (P3). The P3 protocol uses
a remote operations service and optionally a reliable transfer service to
submit messages (interpersonal as well as operations messages) to the
MTA (CCITT Recommendation X.410-1984)% note that embedding this
functionality in the MHS elements was quite controversial and is incon-
sistent with the current structure of the OSI upper layers (see Chapter 10).

The submission and delivery protocol provides the MTA with the
addressing and message-processing information it needs to forward (or
store and later forward) the IPM through the MTS. Thus, either by de-
composing the protocol or by directly parsing the parameters of the
SUBMIT.request, an MTA will have acquired the addressing and pro-
cessing information it needs to forward (or store) the IPM. The MTA
composes a user MPDU, consisting of an envelope and content, to carry
the interpersonal message toward its destination.? (See Figure 8.6.)

User MPDU : : = SEQUENCE { UWMPDUEnvel ope, UWPDUCont ent }

UMPDUENvel ope :

ited,

c= SET {

MPDUI dentii fi er,

-- a global domain identifier—eountry name, administrative

-- domain, and optionally, a private domain identifier, plus a
-- printable ASCI| string—dniquely identifies this UVPDU

ori gi nator ORNane,

ori gi nal Encodedl nf ormati onTypes OPTI ONAL,

Cont ent Type,

-- the class of UA used to create the content—e.g., a val ue of
--1PMor P2

UACont ent | D OPTI ONAL,

-- a printable string

Priority DEFAULT nornal,

-- can be nonUrgent, normal, or urgent

Per MessageFl ag DEFAULT { } ,

-- handling directives: disclose recipients, conversion prohib-

-- alternate recipients allowed, content return request
deferredDelivery [0] IMPLICIT Time OPTI ONAL,

-- UTCTi e

[1] I'MPLICI T SEQUENCE OF Per Donmi nBil ateral I nfo

OPTI ONAL, [2] I MPLICIT SEQUENCE OF Reci pi ent | nfo,
Tracel nformati on }

layer structure described in Chapter 10 was not complete. Remote operations and reliable
transfer mechanisms were incorporated into the MHS model to support the submission and
delivery protocol and message transfer protocol. The term server was used to describe these
remote operations and reliable transfer mechanisms. The structure of the application layer
for the MHS was revised and aligned with the OSI application-layer structure following the
publication of the CCITT Red Books in 1985; the “servers” were removed, and the MHS
model now makes use of the remote operations and reliable transfer service elements.

3. This discussion of X.400-1984 focuses primarily on the submission and delivery of
messages. The X.400-1984 Recommendations describe the operational behavior of UAs and
MTAs and, in particular, describe mechanisms and protocols that MHS elements may use to
perform status inquiries, detect routing loops, etc. Discussion of these aspects is beyond
what the authors hope to cover here.

154 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

UMPDUCont ent :: = OCTETSTRI NG

(Source: Adapted from X.411 (1984), Message Transfer Layer)
FIGURE 8.6 ASN.1 Encoding of the UserMPDU of the P1 Protocol

Conceptually, an IPM with a multipart body, encapsulated in the
P1 protocol, looks like Figure 8.7.
When the user MPDU of the P1 protocol arrives at the message
transfer agent that provides delivery service to mail user Z’s user agent,
notification and delivery of the interpersonal message are accomplished

(7 MPDU denti fier:

Qiginator:

Reci pi ent

_ Cont ent type:

MPDU
envel ope

P

| PMessagel d:
From X
To: Z

cc: Y

Subj ect: Co

| PMheadi ng
i nformati on
nment s on your nmeno

I thinkl'vefoundexactlythe
ri ght housefor you. It has

5bedroons, 3baths, | argekitchen,
fam |y room ona 1-acrewooded | ot .

I A5 body part

Here' s a copy of the photo Yfaxedto me:

&BFax body parit

Let ne knowi

fyou reinterested. |f so,

I I'l arrangef or yout ovi si t andi nspect

t he hone t hi

X

s weekend. I A5 body part

Headi ng

body

Mul ti part

\&

messag

-a—— The interpersonal

.

-4——— The MDPU cont ent—— Envel ope
- Y,

FIGURE 8.7

Conceptual Message Structure

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 155

Organization
Mapping—
Administration
of Message
Handling
Systems

Names and
Addresses in
MHS

through the use of the message-delivery service (DELIVER). If the MTA
is remote from the recipient’s user agent, the del i ver Envel ope MPDU
of the submission and delivery protocol (P3) is used to deliver the mes-
sage from the MTA to mail user Z’s user agent. Z's user agent extracts
the interpersonal message from the envelope and makes it available to Z.
As with message submission, the details of this operation are hidden
from the mail user. (An audible or visible notice of mail arrival is com-
mon to e-mail applications. The mail user then “opens” his or her mail-
box to view the new mail that has arrived.)

Like telephony, electronic mail is most powerful if it crosses organiza-
tional, national, and international boundaries. And like the global tele-
phone network, an infrastructure must be associated with this power to
see that it is operated effectively and responsibly. OSI MHS describes a
hierarchy that enables public and private administrations to cooperate in
providing message-handling services.

A collection of message transfer and user agents is said to consti-
tute a management domain (MD). MDs may provide both message-trans-
fer and interpersonal message services. Publicly administered MDs—i.e.,
those operated by a PTT or regulated telecommunications carrier—are
called administration management domains (ADMDs, or AMDs); MDs
operated by a company or noncommercial organization are called private
management domains (PRMDs or PMDs). Both may offer user agent ser-
vices to their subscribers. For reasons both political and economic, a
PRMD is considered to operate wholly within a single country; hence, a
multinational company will have multiple PRMDs. According to the let-
ter of the X.400-1984 Recommendations, private management domains
may connect to multiple administrative management domains (e.g., a
PRMD in the United States may connect to message handling services
offered by several local, independent, and interexchange companies, if
they were all indeed permitted to offer such information services). PRMDs
are not allowed to forward mail between ADMDs (e.g., act as a mail
gateway between countries), and of course, a private management
domain in the United States, for example, must forward messages to a
PRMD in the United Kingdom through ADMDs. The relationship be-
tween administrative and private management domains, and correct
methods of interconnection are shown in Figure 8.8.

Although such heretical notions are not codified in CCITT
AH A . i

Recommendations, PRMDs within a country may connect
their MTAs without an intervening ADMD in that country. In the United

156

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

The ADMD of
Upper Bot hsver

The ADMD of
Lower
Azer sl oveni g

dave' sexcel | ent
nessagi ng servi ce

doogi e' sdog
enpori um

PRMD

gui do' ssock
exchange

PRMD

The ADMD of
M ddl e
Cl evel andi a

FIGURE 8.8 Administration and Private Management Domains

States, we call this dreaded notion “bypass,” or simply “enterprise mail.”

Every subscriber to the MHS is potentially an originator and recipient of
messages; hence, the term originator/recipient name, or O/R name, is used
to describe an MHS user. An O/R name is supposed to be descriptive; i.e.,
it uniquely and unambiguously identifies an MHS user. O/R names are
composed of attributes that provide sufficient specific information to dis-
tinguish every mail user from every other mail user. For example, sup-
pose there is a Dr. Aorta who is a hematologist on staff in the Temple
University Hospital, Philadelphia, Pennsylvania, U.S.A. (see Figure 7.5 in
Chapter 7). This attribute list uniquely distinguishes Dr. Aorta from Dr.
Ventricle, who is also a hematologist on staff in the hospital of Temple
University, Philadelphia, Pennsylvania, U.S.A. However, if Dr. Bert
Aorta and Dr. Ernie Aorta are both on staff in the same hematology
department, then the attribute list is not sufficient to distinguish Bert
from Ernie; a given-name attribute is needed.

The same logic is supposed to be applied to O/R names, and the
organizational mapping of the OSI Message Handling System provides
insight into the construction of O/R names. Management domains are
responsible for ensuring uniqueness of O/R names within the MD. The

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 157

standard attributes of an O/R name are:

e Personal: nominally a personal name, perhaps composed of sur-
name and given name, initial, and generational qualifier.

 Organizational: the name and unit of the organization (company or
noncommercial enterprise).

o Architectural: ADMD or PRMD name, an X.121 public data network
number, or a unique UA identifier.

» Geographic: nominally a country name; may also include street name
and number, town, and region.

For compatability with telematic services—in the 1984 version of
the OSI MHS, O/R names are sometimes more address than name. From
the attribute lists, MDs may create O/R names of several forms. These
are illustrated in Table 8.1 (consistent with X.400, the optional attributes
are distinguished by the use of square brackets).

An example of one of the more commonly encountered forms of
O/R name is C=US/ADMD = ATTMAIL/PRMD = DNAG6L/ORG =
UNISYS/PN = JudyGertz.

O/R names identify users; to forward messages, however, user
agents must provide the message transfer system with the address of the
destination UA so that the MTS can select the route the message must
take to arrive at the destination UA. In X.400 (1984), O/R names describe
elements of the MHS architecture, and some variants go so far as to
embed network addressing information in the attribute list. In a kinder,
gentler world, O/R names would not have such routing information;
names would be independent from addressing entirely, and the bindings

TABLE 8.1 Forms and Variants of O/R Names

Form 1, Variant 1 Form 1, Variant 2 Form 1, Variant 3 Form 2
Country name Country name Country name X.121 address
ADMD name ADMD name ADMD name Teletex
Terminal
identifier
[PRMD] UA unique identifier = X.121 address

[Organization name]

[Organization unit]

[Personal name] [Domain-defined] [Domain-defined]
[Domain-defined]

158

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Refinements to
the MHS—X.400
(1988)

between O/R names and O/R “addresses” used for routing would be
acquired from a directory service. Fortunately, UAs of mail-processing
systems typically offer users a means of creating personal lists of aliases
or abbreviated names, so rather than having to remember and type “C =
US,” “ADMD = ATTMAIL,” “PRMD = DNAG6L,” “ORG = UNISYS,” “PN
= JudyGertz,” it is quite possible that you'll be able to type or select
“Judy Gertz.”

The 1984 version of the MHS predated the completion of the OSI upper-
and application-layer structures described in Chapters 6 and 10, respec-
tively. Some of the facilities identified in entirely separate application ser-
vice elements—notably, remote operations, reliable transfer, and associa-
tion control—were embedded in the message handling service, along
with the specification of presentation transfer syntax (X.409-1984 is actu-
ally a precursor to ASN.1/BER). The X.400-1984 MHS model also sug-
gested an altogether unnecessary layering relationship between the UA
and MTA service elements.

Deployment of X.400-1984 revealed some serious limitations. It did
not readily accommodate mailing lists, and no security features had been
defined. The naming structure was poorly defined, as was the “store”
component of store and forward. None of these limitations seemed insur-
mountable, and certainly, remedies could be found in four years.
Remarkable what field experience reveals . . .

The 1988 version of the MHS describes a restructured MHS model,
more closely in line with the OSI upper- and application-layer structures.
Specifically, open systems behaving as user agents, message store, mes-
sage transfer agents, and access units—the functional objects in the
Message Handling System—are described as application processes (APs).
Central to each AP is the application entity, which consists of a set of
MHS-specific application service elements that perform message admin-
istration (the MASE), submission (the MSSE), delivery (the MDSE),
retrieval (the MRSE), and transfer services (the MTSE). These ASEs use
the supporting “core” ASEs described in Chapter 10—remote operations,
reliable transfer, and association control. Conversion to/from abstract/
transfer syntax has migrated to the presentation layer.

The user agent and message transfer agent are part of a set of what
are called consumers and suppliers of message handling services. Consider
Figure 8.9. A user agent application entity that consumes services that
perform message submission, delivery, retrieval, and administration ser-
vices consists of a user element (UE) plus the four ASEs that provide
these services. These services are supplied by the MTA along with an

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 159

Consurrer UE(e. g., Suppl i er UE

t he UA) Application (e.g., theNrA)
associ ati on

e Dl

Appl i cati onl ayer A A

Present ati onl ay

Present ati onconnecti on

FIGURE 8.9 MHS Application Entity Structure (1988)

explicit message archive called the Message Store.

The relationship between the functional objects and the consumer/
supplier ASEs is illustrated in Table 8.2.

Some of these changes are reflected in the MHS protocols (the
revised protocol architecture is depicted in Figure 8.10). A message store
access protocol (P7) has been introduced to enable the UA to contact the
message store directly. The submission and delivery (P3) protocol, used
by both the message store and user agents to access the message transfer
service, now has extension fields to accommodate the identification of mail
users through directory names, the use of object identifiers to identify con-
tent type, and the ability to specify external encoded information types.
The structure of the IPM remains the same, and the P2 message content
remains OCTETSTRING, but some of the body parts identified in 1984
are eliminated (telex and simple formatable document, found to be

TABLE 8.2 Relationship between the MHS Functional Objects and the
Consumer /Supplier ASEs

Functional Objects of the MHS
ASE UA MS MTA AU

MTSE — — Consumer/supplier —
MSSE Consumer | Consumer/supplier Supplier —
MSDE Consumer | Consumer Supplier —
MRSE Consumer | Supplier — —
MASE Consumer | Consumer/supplier | Supplier —

160

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Mai | user X Mai | user Z
q'l I%
I nt er per sonal I nt er per sonal
message message
pr ot ocol pr ot ocol
(T) (T)
&] 1S
User / A User
Agent Agent
Kg AN / - 7 ° /
Messageg Messagsg
store store
access access
protocol protoco
(P7) (P7)

Submi ssi on
anddel i very

\ /

Submi ssi on
anddel i very

pr ot ocol pr ot ocol
(P3) (P3)
Submi ssu)/ \ Submi ssi gn
and and
delivery delivery
(pr(c::,t;)col pr(z;tso)cul \
Message Message
Tr ansf er Tr ansf er
Agent Agent
-y |
Message transf
_ prot ocol (P1l))

FIGURE 8.10 MHS Protocol Architecture (1988)

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 161

MHS and the
Directory

redundant). A new value for the content type (22) is defined to distin-
guish X.420-1988-encoded contents from ones that are entirely consistent
with content types that might have been generated using X.420-1984. (In
such cases, the value of this data type remains 2.)

X.400-1988 introduces new functionality as well. It is now possible
to create distribution lists and, within this context, closed user groups.
Distribution lists provide mail users with the ability to send messages to
a group of mail users using a single O/R name (which is the name of the
list). A mail user who is authorized to send mail to a distribution list
sends a single message to the distribution-list O/R name; the message
transfer system sees that a copy of this message is forwarded to all mem-
bers of the list (this process is called expansion). Typically, a single user
manages the distribution list and is responsible for adding members to
and removing members from the list. The distribution list identifies the
recipients of messages but imposes no restrictions on who may post mes-
sages to the distribution-list O/R name, once that name is discovered by
a nonmember. An administrator of a distribution list may also limit who
is allowed to send messages to that list (the constituency of who may
post messages to a distribution list is called a closed user group).

X.400-1988 provides a means of introducing privacy to electronic
mail. Using the security mechanisms developed for the X.500 Directory, a
public-key encryption system can be used to generate an electronic signa-
ture. The means of decoding the signature are understood only by the
communicating parties and the public-key administrator. With the signa-
ture, a recipient can, for example, authenticate the origin of a message,
verify the integrity of the message content, and authenticate the message
partner (peer). Using mechanisms also recommended in X.509, a message
can be encrypted and thus kept confidential. (A thorough discussion of
the security aspects of X.400-1988 is provided in Plattner et al. 1991.)

X.400-1988 introduces the use of X.500 directory names as a complemen-
tary way of identifying mail users (O/R names as composed in X.400-
1984 can still be used). Directory distinguished names, which can be
entirely free of “addressing” attributes, can be used by the UA to access
the MS or MTA, and between the MS and an MTA as well; for routing
between MTAs, however, a directory name-to-UA address mapping
must be performed. Specifically, either the user agent of the originator of
a message or the first message transfer agent on the path from the origi-
nator to the recipient must perform the directory name to O/R address
mapping by querying the OSI Directory whenever the originator uses a
directory name rather than an O/R address. Such mappings can be regis-

162

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

MHS Use of
Remote
Operations and
Reliable Transfer
Facilities

Interworking
between X.400
(1984) and X.400
(1988)

tered in the OSI Directory by the administrator of a management
domain; thereafter, MTAs may search the OSI Directory for the name-
address mapping. The name-to-address mappings may also be modified
by an administrator if, for example, a mail user moves from one manage-
ment domain to another. If directory naming is done independently of
UA addressing, the migration of the mail user from one management
domain to another is entirely transparent to all other mail users.

Message Handling System use of the OSI Directory is not limited to
name-address resolution. MHS elements may use the OSI Directory to
expand distribution lists (i.e., to obtain the UA addresses of all the UAs
that provide service to members of the list) and to learn what services
and functions MHS components support.

In configurations in which an MTA is remote from a UA, the submission and
delivery protocol (P3) provides the means by which an MTA and the user
agent accomplish what would otherwise be signaled across a local interface,
perhaps in something as simple as a procedure call; i.e., the UA invokes oper-
ations at the MTA (literally “store and forward the message”), and similarly,
the MTA delivers messages to the UA (deliver it to the user). In OSI, proce-
dure calls that are performed across a distributed interface (i.e., across an OSI
connection between two applications) are called remote operations.

Interpersonal messages containing graphic, digitized voice, or fac-
simile body parts can be quite large. Generally speaking, if communication
between UAs and MTAs is disrupted during the transfer of a large mes-
sage, restarting from the beginning of the message is time-consuming and,
in some cases, expensive. For such messages, the ability to provide check-
points during message transfer so that UAs and MTAs can recover from
(temporary) communications failures, resynchronize to a common point to
restart, and continue from that point with a minimum amount of retrans-
mission is an important aspect of message forwarding and delivery. In OSI
this is called reliable transfer. OSI provides both reliable transfer and remote
operations capabilities as part of the communications toolbox described in
Chapter 10, ‘Core” Application Service Elements. In the 1984 version of the
MHS, remote operations and reliable transfer were embedded in X.400
(1988), the MHS application service elements make use of the remote oper-
ations and reliable transfer services provided by the core ASEs to operate
the MHS protocols.

By the time the 1988 version of MHS was available, a modest but grow-

4. The mechanisms to assist in negotiating the correct OSI upper layer protocol envi-
ronment are described in Chapter 10.

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 163

ing installed base of 1984 implementations existed. Eventually, these will
go away. However, with the extensions to the MHS and protocols, with
the introduction of new naming conventions, and in particular, with the
considerable modifications to the OSI upper layers over which MHS
would operate, a fair number of incompatibilities exist.4

From the perspective of the 1988 MHS user, interconnecting 1988
and 1984 MHS implementations is a process, however temporary, of
lowering one’s expectations and is called downgrading. The extensions
introduced in the 1988 version were done so that the MHS would run
without them (they are encoded as additional elements of protocol).
X.419-1988 Appendix B notes that unless the extension is marked as criti-
cal for transfer or critical for delivery, it can simply be deleted; other-
wise, “downgrading” cannot be performed, and message forwarding/
delivery will fail. (A particularly disappointing aspect of downgrading is
that it prevents the use of the security features.) Directory names cannot
be used, and X.419-1988 suggests that downgrading be accomplished by
deleting the directory name and the O/R address. The Internet commu-
nity has spent considerable time and effort piloting the use of X.400 and
has some practical solutions to dealing with “downgrading.” As a gener-
al approach, RFC 1328 suggests the use of a domain-defined attribute,
always a standard O /R name as defined in RFC 1327.

RFC 1328 also suggests several alternatives that may be applied
when dealing with the issue of downgrading interpersonal messages.
Depending on gateways and their configuration, it will in some cases be
necessary to downgrade from an X.400-1988 content type to one con-
forming to X.400-1984. In such circumstances, only protocol control
information and addressing that can be parsed by a 1984 MHS imple-
mentation can remain in the IPM that is to be forwarded. Body-part con-
version is another story. Five scenarios exist:

 Some of the information encoded in the 1988 body part is lost.

 The 1988 body part is converted without loss (not always in the “a
miracle occurs” category, but close).

« Conversion is simply not possible, and the message must be dis-
carded.

e The body part can be discarded and replaced with a (typically IA5
text) message.

+ The body part can be encapsulated as an external 1984 body part.

Although these scenarios paint a somewhat bleak picture when
downgrading, the net effect is more positive. Mail users on 1984 MHS
may still exchange primarily textual messages with 1988 MHS mail
users. The bottom line on downgrading: avoid it if possible.

164

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Internet Mail

Although there are many mail systems in operation across the TCP/IP
Internet, the most popular is based on the Simple Mail Transfer Protocol
(SMTP, RFC 821), a protocol used to reliably transfer mail, and the stan-
dard for Internet text messages (RFC 822), which specifies a syntax for
text messages. SMTP uses an interprocess communication paradigm for
mail submission, relay, and delivery; since mail transfer is expected to be
reliable, SMTP operates over a TCP connection (see Chapter 12) between
hosts. Hosts in the mail system provide mailboxes for mail users, behav-
ing in this role like MHS user agents.” Hosts attached to more than one
network relay mail messages between hosts that are not connected to the
same network; their behavior in this role can be compared to MHS mes-

Mai lappl i cation Mai lappl i cation
gener at es RFC 822 interprets RFC822
fornatted nessage format t ed nessages

] SMIP commands/ replies
m N\ Y .|'|

Mai | User " Ted" on host
excel | ent . advent ure. com

Mai | User " Dave" on host
bogus. advent ur e. com

advent ure. com

rel ay host
bol d. advent ur e. com

Mai lappl i cation
interprets RFC822
for mat t ed messages

m sadvent ur e. edt

Mai | User " Cat hy" at
seri ous. m sadvent ur e. edu

FIGURE 8.11 SMTP Model for Mail Delivery

5. The analogy is not intended to suggest that Internet based its architecture on MHS;
it is merely an artifact of having elected to describe MHS first. It is probably safer to
assume that while developing the X.400 MHS recommendations, CCITT and ISO experts
may have happened across the Internet mail standards among the many they researched,
and some are likely to have used Internet mail during the MHS development period.

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 165

sage transfer agents. The collection of hosts involved in these activities
forms an SMTP-based mail-delivery system, as shown in Figure 8.11.

RFC 822 defines the syntax and composition of mail messages. As
with MHS, mail consists of an envelope containing information neces-
sary to forward and deliver mail, and a message content. Mail consists of
a header and a single body part consisting of lines of text; standard “822”
mail doesn’t address how one might encode graphics, facsimile, voice,
etc. Through years of experience, folks in the Internet have applied “ad
hack” means of transferring documents more complex than mere 7-bit
ASCII text; common ways to transfer binary information include pro-
grams that expand each digit of a binary octet into two 7-bit ASCII bytes
or encode 3 octets as 4 plus control information (e.g., UNIX uuencode)
RFC 1113. More recent extensions to SMTP provide a wider range of pos-
sibilities and are discussed later in the chapter.

The RFC 822 mail header consists of single lines of ASCII text
called header fields.® Each field contains a field name and a field body. A
field name is separated from the field body by a colon (“:”) and may not
contain any SPACE or control (CTL) characters including the colon. The
field body is terminated by a carriage return character followed by a line
feed character (CRLF). RFC 822 does not require that the fields in the
mail header appear in a particular order, except that all header fields
must precede the body of the mail message.” The general form of mail in
the metasyntax used by RFC 822 is shown in Figure 8.12. Figure 8.13 pro-
vides an “annotated” example:

field =field-name “:” [field-body] CRLF
field-name = 1*<any CHAR, excluding CTLs, SPACE, and “:">

field-body = field-body-contents
[CRLF LWBP-char fi el d- body]

field-body-contents =

<the ASCI| characters making up the field-body, as
defined in the follow ng sections, and consisting
of conbinati ons of atom quoted-string, and

6. The notion of a “single” line is slightly deceiving, since it is more accurately interpret-
ed as a set of ASCII characters terminated by a carriage return/line feed (CRLF) combination.
7. RFC 822 does recommend that, if present, header fields should be sent in the follow-
ing order: “Return-Path,” “Received,” “Date,” “From,” “Subject,” “Sender,” “To,” “cc.”

166 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

speci al tokens, or else consisting of text>
(Source: RFC 822 (1982), Standard for the Format of ARPA Internet Text Messages)
FIGURE 8.12 Metasyntax of “822” Mail

Replied: Wed, 20 Jan 93 16: 16: 04 -0500 % date this mail reply was sent
Replied: “Christine Hentick <henrick@i sco.conp” % identifies who replied to mail
Return-Path: henrick@i sco.com % i nformati on about the address and

% route back to mail originator,
% provi ded by final transport system
Recei ved: by mail.bellcore.comid 9301202023. AA05391 % a copy of this field is added by
each
% transport service that relays the
% nessage—dsed for trace
Recei ved: from ash. ci sco.com by breeze. bell core.com (5.61/1. 34)
id AA06912; Wed, 20 Jan 93 15:20:49 -0500

Message-1d: <9201202020. AA06912@r eeze. bel | core. con®. % uni que nmessage identifier
Recei ved: by ash.cisco.com Wd, 20 Jan 93 12: 20: 44 -0800
From Christine Henrick <henrick@i sco.conr % sender of message
Subj ect: RE: meeting tine and venue % subj ect
To: dave@bell core.com (Dave Piscitello) % i nt ended reci pi ent
Date: Wed, 20 Jan 93 12:20:43 PST % time message was received by
% transport system serving recipient

I n-Repl y-To: <9201201625. AA17281@wor d. bel | core. conp; % identification of nmessage
to which

from*“Dave Piscitello” at Jan 20, 93 11:25 am % this message replies
X-Mailer: ELM[version 2.2 PL16 m ps 1] % user-defined field name

FIGURE 8.13 Sample “822” Mail Header

Mail is composed according to this syntax and submitted by an
end-user application to a mail facilitiy—e.g., UNIX sendmail—for for-
warding; in this example, the sendmail facility uses “ARPANET” mail
format and SMTP commands.

SMTP commands and replies are also encoded as 7-bit ASCII char-
acters. The core aspects of sending and receiving mail are straightfor-
ward. Suppose that mail user Ted at host “ excel | ent . advent ur e. conf
wishes to send mail to user Dave at host “ bogus. advent ur e. conf and
that Ted’s computer is able to establish a TCP connection to Dave’s com-
puter. Ted uses a mail application to create and send an 822 mail mes-
sage. The mail application at excel | ent. advent ur e. cominitiates a
mail transaction with host bogus. advent ur e. comby invoking a local
sender SMTP process, which establishes a TCP connection to a receiver
SMTP at host bogus. advent ur e. comat service port 25. To indicate
that the TCP connection was successful, the receiver SMTP at bogus.

8. The three-digit reply code is used by SMTP; any text that follows is meant to assist
postmasters . . . or humor them.

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 167

advent ur e. comreturns the SMTP reply “220 bogus. advent ure. com
Service Ready.” The sender SMTP process at excel | ent. adven-
tur e. comnext sends the command “HELO excel | ent. adven-
t ur e. cont’; the receiver SMTP accepts the mail connection by returning
the reply “250 bogus. advent ur e. com Hello excellent pleased to meet
you” to the sender SMTP.# At this point, the sender and receiver SMTP
processes have completed greetings, and mail transactions may proceed.
The sender SMTP at excel | ent. advent ur e. comissues the command
“MAIL FROM: <Ted@xcel | ent . advent ure. conmr.” The receiver
SMTP at bogus. advent ur e. comacknowledges the identification of
the sender by replying “250 <Ted@xcel | ent. adventure. con>
...Sender OK.” The sender SMTP then submits the recipient information
for the mail in the command “RCPT TO: <Dave@ogus. adven-
t ure. conp.” The receiver SMTP at bogus. advent ur e. comindicates
that it knows about the mailbox “Dave,” so it replies “250
<Dave@ogus. advent ur e. conp... Recipient OK.” The sender SMTP
now sends the mail message “DATA,” indicating that it wishes to for-
ward a mail message. The receiver SMTP replies “354 Start mail input;
end with <CRLF>. <CRLF>" and will treat the text lines that are trans-
ferred as mail data until it receives a mail data termination sequence; i.e.,
a CRLF, followed by an ASCII period character (“.”), followed by a
CRLF. If the message transfer is successful, the receiver SMTP at
bogus. advent ur e. comreplies “250 OK” and attempts to notify Dave
that mail has arrived. (If this were the only message that the mail system
at excel | ent . advent ure. comhad to send to bogus. advent ure.
com it would then issue a “QUIT” command, and the receiver SMTP
would close the mail service connection [reply code 221]; otherwise, the
mail sequence is repeated.)

Note that if there were multiple recipients for this mail, the sender
SMTP would issue one “RCPT TO: <forward-path>" command for each
recipient, where the <forward-path> argument indicates a single mail
recipient’s address (a source route to a mail recipient may accompany
the address as part of the argument).

This example illustrates only the scenario in which the host systems
involved are able to establish direct connectivity—e.g., within a single
domain (advent ur e. com). In configurations in which mail-delivery
hosts cannot directly connect using TCP (e.g., for policy /administrative
reasons, an enterprise network may not allow all mail systems within its
domain to exchange mail directly), mail must be forwarded through
multiple mail-delivery systems. (This is also true, and even more compli-
cated, when mail application “gateways” are used to send and deliver

168 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

mail between mail users operating over different mail systems—e.g.,
MHS and Internet mail, discussed later in this chapter.) Suppose, for ex-
ample, that Ted tries to send mail to Cathy’s mailbox at seri ous. mi s-
advent ure. edu, and excel | ent. advent ur e. commust relay mail
through bogus. advent ure. comto do so. The sequence of mail com-
mands and replies might be as shown in Figure 8.14.

SMIP Process Conmand/ Repl y
{excel l ent.adventure.comis the source host, and bol d. adventure.comthe relay host, see
Figure 8.11}
sender (opens TCP connection to host bol d. adventure. con
receiver 220 bol d. adventure. com Servi ce Ready
sender HELO excel | ent. adventure. com
receiver 250 bogus. adventure.com Hello excellent pleased to neet you
sender MAI L FROM <Ted@xcel | ent. adventure. con>
recei ver 250 <Ted@xcel |l ent. adventure. conp. .. Sender K
sender RCPT TGO <@ol d. adventure. com Cat hy@eri ous. m sadvent ur e. edu>
recei ver 250 <@ol d. advent ure. com
Cat hy@erious. m sadventure. edu... Recipient K
sender DATA
receiver 354 Start mail input; end with <CRLF>. <CRLF>
sender Date: 14 MAY 1993 10:10: 11
sender From Ted@xcel |l ent.adventure.com
sender Subj ect: reschedul e conference time & venue
sender To: Cathy@erious. m sadventure. edu
sender
sender I have a conflict; can we reschedule to Tuesday at 9 an®?
sender
sender .
receiver 250 K
sender QT
receiver 221 excel I ent. adventure.com Service closing transm ssion channel

{relay host bol d. advent ure. com now becones the sender, and destinati on host serious.m sad-
vent ure.
edu, the receiver}

sender (opens TCP connection to host serious. nm sadventure. edu
receiver 220 serious. m sadventure. edu Servi ce Ready
sender HELO bol d. advent ure. com
receiver 250 serious. m sadventure. edu
sender MAI L FROM <@ol d. adventure. com Ted@xcel | ent. advent ure. com>
receiver 250 K
sender RCPT TGO <Cat hy@eri ous. m sadvent ure. edu>
receiver 250 K
sender DATA
receiver 354 Start mail input; end with <CRLF>. <CRLF>
sender Recei ved: from excel |l ent. adventure. com by
bol d@dventure. com 14 NMAY 1993 10: 11: 45
sender Date: 14 MAY 1993 10:10: 11
sender From Ted@xcell ent.adventure.com
sender Subj ect: reschedul e conference tinme & venue
sender To: Cathy@erious. m sadventure. edu
sender
sender I have a conflict; can we reschedul e to Tuesday at 9 an®

sender

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 169

sender
receiver
sender
receiver

FIGURE 8.14

250 OK
QT

221 serious. m sadventure. edu Service closing transni ssion channe

Relayed Mail Scenario

It is important to note that, while sending, mail-delivery systems
keep a copy of the mail they forward until they have successfully trans-
ferred it to the destination system (the host of the recipient); in the case
of relaying, a sender only keeps a copy until it has successfully trans-
ferred the mail to the relay (and the process iterates as each relay acts as
a sender). The positive aspects of using a reliable transport service like
TCP to transfer mail in these circumstances is sometimes negated: mail
can be misrouted or lost by mail systems, and it is often difficult if not
impossible to provide a failure notification to the originator.

Mail Addresses In its simplest form, a mail address—or mailbox—is
by convention of the form {“local part,” “@,” “domain”}. The local part
may be as simple as the name of a user; e.g., Ted, Dave, or Cathy in the
earlier examples. The local part may be decidedly complex, especially if
used at gateways to convey mail addresses of mail systems other than
SMTP/822 systems (e.g., UUCP or proprietary mail systems). “Domain”
always names a host in the mail system (see Chapter 7); it is typically con-
structed as a sequence of {”elementl/” “.,” “element,,” “.,” ... “ele-
ment,”}. The nth elements (e.g., “com” and “edu”) are “top-level” name
domains that share a common root—the Internet naming domain—and
elements n — 1 to 1 are children of the root; for example, “serious” is a
host in the “misadventure” name domain, which itself is in “edu.”

Most mail applications allow users to create nicknames or aliases
that are easier to remember—i.e., “user-friendly.” The UNIX mail pro-
cessing system permits users to create single-name aliases and personal
distribution lists using an alias command line; e.g., the entry “alias Ted
Ted@xcel | ent. advent ure. cont” will allow a user to type “Ted”
rather than the full mail address.

Distribution Lists SMTP provides distribution-list capabilities by
means of an EXPAND (EXPN) command, which has a single argument
<string> that identifies a mailing list. A sender SMTP process that must
forward mail containing an unrecognized “To:” argument—one that is
neither a legitimate mailbox nor a locally maintained alias—opens a TCP
connection to a host that knows the mailing list and, following the ex-
change of greetings, sends an “EXPN <string>" command; if the host

170

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

indeed knows how to expand the string, it returns a succession of posi-
tive-completion “250” replies, each conveying one mail address. The
sender SMTP process concludes this mail session and begins another,
sending a succession of “RCPT TO <forward-path>" commands to iden-
tify each of the members of the mailing list who should receive copies of
the mail. This example, of course, presupposes that the sender SMTP
actually knew that the argument of the “To:” was in fact a mailing list.

MIME—Multipurpose Internet Mail Extensions RFC 1341 defines
mechanisms for generalizing the message content of 822 mail to include
multiple body parts, which may be both textual and nontextual; i.e., like
OSI MHS, the mail contents can be combinations of voice, graphics, and
text, and the text can be multifont and multicharacter set. The extensions
include:

« A MIME-version header field (like the P2 content-type field in X.400
MHS), to distinguish MIME message contents from 822 message
contents.

+ A content-type header field, to specify the type and native repre-
sentation of data in the body of a message.

» A content-transfer-encoding header field, to specify an auxiliary
encoding applied to the data to allow them to pass through mail-
transport mechanisms incapable of transferring the data in their
native representation.

+ Content-ID and content-description header fields, two optional
header fields to further describe the data in a message body.

MIME will support the following content-types:

o+ Text: textual information in many character sets, and possibly for-
matted.

o Multipart: several body parts, possibly of differing types of data,
combined in a single message.

» Application: application-specific or binary data.

» Message: an encapsulated mail message.

« Image: still images, “pictures”.

 Audio: audio or voice.

« Video: video, composite audio/video, or moving image data.

MIME specifies two encodings for the extended content types.
Where data largely consist of octets that correspond to printable ASCII
characters, MIME recommends a quoted-printable encoding; mail systems
will process such encodings without modification, leaving the encoded
version in a mostly human-readable form. Where data consist of arbi-

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 171

Security

trary octet strings, MIME recommends Base64, a variant of the encoding
scheme from RFC 1113; briefly, and proceeding from left to right, 24 bits
are grouped together, represented as output strings of four encoded 6-bit
characters, and then translated into a single alphabetic character from
the base-64 ASCII set.

MIME also describes extensions that permit the use of character
sets other than ASCII in text tokens of 822 header fields such as “Subject”
or “Comments,” within a comment delimited by “(” and “),” and in a
word or phrase in a “From,” “To,” or “cc” header field. Both the header
and body contents extensions are intended to be compatible with exist-
ing mail implementations. MIME uses the mail header fields defined in
RFC 822, leaving the field names intact and in ASCII, but extends the
encoding of the field body by introducing the notion of an encoded word,
which, although transparent to mail systems that do not implement
MIME, conveys semantics in addition to the header field—e.g., a charac-
ter set and encoding. Specifically, an encoded word begins and ends
with an ASCII “=, “and three arguments—character set, encoding, and
encoded text—are bounded by an ASCII “?” (there are thus always four
“?”s) and terminated by a SPACE or new line. The character sets include
US-ASCII and the ISO/IEC 8859 (1987) ISO 8859 family of character sets.
Like the MIME message body parts, the encoding is either an ASCII “B,”
for Base64, or “Q,” for “quoted-printable.” The encoded text is any print-
able ASCII character string. (Using “Q,” however, there are some con-
straints; i.e., you cannot embed a “?” or SPACE in the string, and other
characters—"/,” “1,” “<,” “>,” and “@”—are illegal in header fields,
where they are significant.) Thus, using encoded text in the field body of
the “To:” header field in the following fashion

To: =71 SC8859- 1?7Q?Andr=E9_7?= Pirard <Pl RARD@n1. ul g. ac. be>

allows one to encode the name “André Pirard” without sacrificing the
accent mark over the e. The loss of transparency in field bodies is small
in comparison to the gain for mail users who benefit from the extensions.

MIME is a promising and valuable method of enhancing the inter-
working between Internet mail and the OSI Message Handling System:
with it, the multimedia aspects of MHS can be extended to environments
where Internet mail is preferred.

RFC 1113, Privacy Enhancement for Internet Electronic Mail: Part [—Message
Encipherment and Authentication Procedures, describes how to provide con-
fidentiality, authentication, and message integrity as-surance using cryp-
tographic techniques on messages exchanged between originator and

172

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

recipient user agent processes in environments where RFC 822 mail mes-
sages are used. Like many extensions to TCP/IP applications having a
large embedded base, privacy-enhanced mail (PEM) is designed so that
the mail-transfer agents—SMTP processes or any message-transfer sys-
tem that supports RFC 822 mail message formats—aren’t affected by the
deployment of the extensions. PEM provides data confidentiality (protec-
tion against unauthorized disclosure of a message and certain mail head-
er fields); sender authentication (corroboration that the originator of a
mail message is indeed who he or she claims to be); message integrity
(proof that the message has not been tampered with); and if asymmetric
key management is used, nonrepudiation of message origin (proof of the
integrity and origin of the message). These privacy facilities are provided
by encoding a set of header fields to carry the cryptographic control
information and an encrypted message and conveying these as the text
portion of an RFC 822-formatted mail message (the encrypted message is
encoded in printable form). (See also RFC 1422, Privacy Enhancement for
Internet Electronic Mail: Part 11— Certificate-based Key Management, REC-
1423, Privacy Enhancement for Internet Electronic Mail: Part III— Algorithms,
Modes, and Identifiers, and RFC 1424, Privacy Enhancement for Internet
Electronic Mail: Part IV —Key Certification and Related Services, which
supercede RFCs 1113, 1114, and 1115.)

Interworking between MHS and Internet Mail

In general, interworking between mail applications involves any or all of
the following:

» Mail address translation—e.g., from OSI MHS O/R names to Inter-
net mailbox addresses.

 Protocol mapping—e.g., from RFC 822 Internet text message format
to an X.400 interpersonal message (P2), or SMTP to X.400 message
transfer access protocol (P1).

+ Message content handling—the preservation of content type of all
message content parts supported in one message transfer system to
another—e.g., the preservation of the text content of an RFC 822
message across an X.400 MHS as content type 2.

Much of the useful work in interworking between OSI MHS and
Internet mail systems has been performed in the IETF message-handling
working groups and documented by Steve Hardcastle-Kille (RFC 987,
RFC 1026, RFC 1137, REC 1327), who has also done extensive work in the

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 173

development of mail interworking for the U.K. academic community,
which uses the Joint Network Team or Grey Book mail system (Kille
1984a, 1984b). The most recent proposed standard, RFC 1327, defines
interworking or mapping between X.400-1988 and RFC 822, with back-
ward compatibility with earlier mappings to X.400-1984-based mail sys-
tems.

A comparison between Figures 8.4 and 8.13 suggests that the
“header information” used when composing electronic mail in these two
systems is quite similar. The mappings between the RFC 822 message
header and the interpersonal message system protocol (P2) described in
X.420-1988 when an 822 message system is the point of mail origin are
accomplished by mapping the RFC 822 header into an extension field in
the IPM. When an X.400 MHS is the point of mail origin, mappings are
accomplished by (1) mapping existing RFC 822 header fields onto corre-
sponding IPMS protocol information and (2) introducing extension
header fields where required. Currently, multipart bodies are supported,
but with some loss of information; with MIME extensions, however, it is
anticipated that further investigation into interworking between MIME
and the OSI MHS will yield mappings that will preserve multipart mes-
sages, as well as messages containing multimedia body parts.

Mapping of an RFC 822 mail address is onto an X.400 O/R address.
The simplest incarnation of this mapping assumes that the country,
ADMD, PRMD, organization, and organizational unit attributes in an
O/R address are present; these are mapped to elements in the domain
part of an 822 address. The personal name is mapped to the local or user
part. For example, it isn’t that difficult to see how the following e-mail
addresses can be converted into equivalent O/R addresses:

S.Kille@cs.ucl.ac.uk mdavies@nri.reston.va.us
C="GB” C="Us5"

ADMD = “GOLD 400” ADMD =“ATTCOM”
PRMD = “ac” PRMD = “va”

O ="“UCL” O = “reston”

OU = “¢g” OU = “nri”

PN = “S.Kille” S = “mdavies”

Of course, when attributes corresponding to local and domain parts
are absent or ambiguous—e.g.,, a mail address of the form
“dave@rai | . bel | core. cont’” or “tredysvr!dvnspcl! dvncnns
'l ap@vl v2. gvl . uni sys. cont —things get stickier. RFC 1327 devotes
considerable attention to the details of providing gateway mappings

174 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

between complex RFC 822 addresses and O/R addresses and also describes
methods of mapping between directory names and RFC 822 addresses.

RFC 1327 is unlikely to be the last of the 822-to-MHS interworking
documents; the current incarnation of interworking does not yet address
security extensions or dealing with different and multiple message con-
tent types. These are likely to be more important as field experience with
X.400-1988, MIME, and privacy-enhanced mail increases. In any event,
don’t be surprised if you begin to receive via your Internet mailer mail
headers such as those shown in Figure 8.15.

From Al f. Hansen@lel ab. sintef.no Tues May 18 07:27:58 1993
Ret urn-Pat h: <Al f. Hansen@lel ab. si nt ef . no@abre. bel | core. con>
X400- Recei ved: by nta mhs-relay.cs.w sc. edu in / PRVMD=XNREN ADMD= / C=US/ ;
Rel ayed; Tues, 18 May 1993 06: 21: 04 +0000
X400- Recei ved: by /PRVD=uni nett/ADMD= / C=no/; Rel ayed;
Tues, 18 May 1993 06:18:10 +0000
X400- Recei ved: by /PRVD=uni nett/ADMD= / C=no/; Rel ayed;
Tues, 18 May 1993 06:18: 06 +0000
Date: Tues, 18 May 1993 06:18: 06 +0000
X400-Originator: Al f.Hansen@lel ab. si ntef. no
X400- Reci pi ents: non-di scl osure:;
X400- M s-1dentifier: [/PRVD=uninett/ADVD= /C=no/; 930518131806]
X400- Cont ent - Type: P2-1984 (2)
Content-ldentifier: 2483
Conversi on: Prohibited
From Al f Hansen <Al f. Hansen@lel ab. si nt ef. no>
To: Erik Huizer <Erik.Huizer@urfnet.nl> (IPM Return Requested)
Cc: dave <dave@abre. bell core.conm> (I PM Return Requested),
skh <skh@erit.edu> (1 PM Return Requested),
“Kevi n. E Jordan” <Kevi n. E. Jor dan@rer cury. oss. ar h. cpg. cdc. con> (| PM Return Request ed),
“S.Kille" <S.Kille@s.ucl.ac.uk> (I PM Return Requested),
“Haral d. T. Alvestrand” <Haral d. T. Al vestrand@el ab. si ntef.no> (1 PM Return Requested),
sjt <sjt@ateway.ssw.cont (I PM Return Requested),
Megan Davi es <ndavi es@ri.reston.va.us> (I PM Return Request ed)
I n- Repl y- To: <9305151310. AA20876@ur vi val . surfnet. n>
Subj ect: Re: Boston | ETF schedul i ng
Status: RO

Erik,

FIGURE 8.15 822 Headers from an 822-MHS Relay

Conclusion

This chapter has examined the electronic mail and message handling ser-
vices of OSI and the Internet. The evolution of the OSI MHS functional
model and protocol architecture was traced from the 1984 version to that

OPEN SYSTEMS MESSAGING: ELECTRONIC MAIL 175

described in X.400-1988. (Readers should note that the inability on the
part of standards makers to arrive at a consensus on the OSI application-
layer structure in 1984 introduced perturbations not only in the MHS
architecture but in the entire OSI upper-layer architecture; these are dis-
cussed in Chapters 10 and 11.) The 1988 version of the OSI MHS is a sub-
stantial improvement over its 1984 ancestor, providing a useful, scalable,
and secure framework for multimedia messaging.

SMTP/822, or “Internet mail,” has evolved from a humble text-only
platform to a message handling service that is seemingly feature for fea-
ture the equal of OSI MHS by the introduction of privacy enhanced mail
and MIME. When PEM was introduced, and MIME shortly thereafter,
hard-line Internetters were quick to proclaim X.400 dead, while equally
hard-line OSI types dismissed these SMTP extensions as yet another hack.
There is, in fact, more posturing than truth in such statements. Readers
are asked to consider whether it is really important that there be a winner
or whether the true benefit of having two equally powerful message-han-
dling services is that interworking between them will result in a consider-
ably more robust and globally interconnected electronic mail system.

NETWORK MANAGEMENT

Why all the interest in network management, and why all the effort? Part
of the answer lies in the ever-increasing importance of networks and
internetworking. Today, the phrase mission critical applies not just to net-
works that support space-exploration applications but also to those that
support sales, airline and hotel reservation systems, health care, com-
modity and stock exchanges, commerce, and finance. Nearly every busi-
ness depends on the health of its network to remain in operation. Like
the dial tone in the voice network, the availability of facilities for data
communications is now taken for granted, and there is an increased
incentive to keep networks healthy.

Part of the answer lies in the actual number and size of networks.
Data network operation is no longer a matter of managing one site, with
one vendor’s equipment and one vendor’s proprietary management
tools. And increasingly, as enterprises connect their networks to share
information, “operations” crosses administrative boundaries as well.

These observations address the question “why all the interest?” The
answer to the question “why all the effort?” lies in the fact that until
recently, with only a handful of noteworthy exceptions, management
and diagnostic tools for data networks were either proprietary or home-
brewed. There is thus both opportunity and incentive for those who wish
to become involved in a new technology that can be put to practical use
in a short time frame.

The OSI and Internet communities have each developed technolo-
gies to solve the problem of network management. The Internet ap-
proach is based on a management protocol called Simple Network Man-
agement Protocol (SNMP), designed with the philosophy apparent from

177

178

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

its name: keep it simple. The OSI approach is based on a management
protocol called Common Management Information Protocol (CMIP), also
designed with the philosophy apparent from its name: provide a com-
mon protocol flexible enough to solve all problems.

This fundamental difference in design philosophies created the pre-
dictable result. SNMP was designed and deployed quickly, solving the
immediate problem of managing the Internet and then moving beyond to
other networking environments. CMIP took longer to design, and its
deployment is slowed both by its inherent complexity and by the market
success of SNMP. Nevertheless, both SNMP and CMIP technologies exist
today and will likely continue to be deployed in future network- and sys-
tems-management products. And it is also true that these two manage-
ment models do not address the entirety of the issues related to network
management. It is therefore advisable to explore what each tool has to
offer and to construct complete management solutions that solve real-
world user needs based on whatever combination of technologies is
appropriate.

The Internet Approach: Keep It Simple

While the Internet remained a modest collection of hosts, gateways, and
users, network management was an “ad hack” practice, and home-brew
management, abetted by the sturdy ICMP “ping” facility, was the norm.
As the Internet grew both in size and in importance to its users, and as
TCP/IP-based internetworking expanded outside the research communi-
ty, the need for network management capabilities grew. By 1988, re-
search and experimentation by the Internet community led to the defini-
tion of two management systems and associated management protocols:
the High-Level Entity Management System (HEMS) (Partridge and Trewitt
1988; RFC 1021; RFC 1022) and the Simple Network Management Protocol
(RFC 1157).

Both of these management protocols were designed to operate over
the TCP/IP protocol suite. However, because of a strong desire on the
part of U.S. government agencies to have a graceful transition from
TCP/IP to OS], the research community agreed to abandon the longer-
term HEMS effort in favor of a management framework based on OSI
CMIP standards (the trials, travails, and tragedy of OSI Common Man-
agement over TCP/IP are discussed later in this chapter).

SNMP was initially viewed as an interim step on the road to the
longer-term OSI solution; of course, nothing is ever truly interim. SNMP

NETWORK MANAGEMENT 179

What Is Managed
in an Internet?—

Internet SMI and
MIBs

proved to be an especially adaptable management framework. Executable
code for SNMP fit into literally anything containing an embedded micro-
processor and was rapidly implemented into a wide range of networking
components, from mainframe host systems to PCs, routers, bridges,
data/channel service units, even uninterruptable power supplies. The
immediate success and subsequent widespread deployment of SNMP
have caused folks to reconsider even mentioning SNMP and the word
interim in the same breath.

SNMP and the SNMP-based network management framework are
described in the following sections.

In the SNMP management framework, shown in Figure 9.1, there are
four basic elements: the managing entity, the managed entity, the man-
agement protocol used between the two entities, and the management
information base. The managing entity is an application residing in a net-
work management station (NMS). The network management application
monitors, and in some cases controls, the operation of network resources
(e.g., routers, bridges, and hosts). The managed entity that resides in the
managed network resource is called an SNMP agent; it is responsible for
responding to management operation requests received from the NMS.
In addition, the SNMP agent may asynchronously send messages called
traps to NMSs when the SNMP agent detects certain predefined events,
such as a link failure, in the managed network resource. The management
protocol used between the NMS and the SNMP agent is, of course, the
simple network management protocol. The management information base,

Net wor k- Managed
nmanagenent net wor k
station (resource)
Managenent

conmmuni cat i on

Request s, response
andtraps

[oooo]
O O O

M B
Appl i cati ons vari abl e

FIGURE 9.1 Internet Management Model

180

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

or MIB, is a logical store of information used to support network man-
agement (RFC 1213).

SNMP-based network management is based on a philosophy of
keeping the required management overhead and functionality at a mini-
mum for both the network and the managed resources (this is referred to
in The Simple Book as the Fundamental Axiom of Network Management
[Rose 1991]). In the SNMP model, the network-management station is
expected to perform more network management-related processing than
the managed resource since (1) the network management station’s primary
job is to support network management, and (2) generally speaking, the
network management station and its users have a clearer understanding
of the “big picture” of the network than any individual managed re-
source. The NMS usually has applications that may show maps of the
managed network, chart various statistics (received/sent packets, error
packets, etc.), and notify an operator of errors via audible or visible
alarms. The NMS may even perform some rules-based analysis—also
hyped as artificial intelligence or applied learning—to help the network
manager maintain the network and resolve network problems.

The managed network resource’s primary function is not network
management: routers should route, bridges should bridge, and hosts
should host applications. For these resources, network management
should be secondary. In the SNMP model, the agent is expected to devote
less to network management processing than the NMS, and typically per-
forms management operations in response to requests from the NMS.
With SNMP, network management is based on the NMS polling the
agents in a network for information; it is expected that generating re-
sponses to polls should impose less processing at a managed resource
than the often computationally complex process of diagnosing problems.

SNMP-based network management further refines the notion of
polling by applying a network management paradigm known as trap-
directed polling. In trap-directed polling, the NMS polls an SNMP agent in
response to an asynchronously generated alarm called a trap message! it
receives from the SNMP agent (as opposed to continually polling for
information from the SNMP agent or expecting the SNMP agent to
download information on a regular basis). Trap-directed polling relieves
the SNMP agent from the burden of monitoring for thresholds or main-
taining schedules for downloads, and relieves the network of the traffic
caused by frequent polling for information. Trap messages, however, are

1. The trap message indicates that a noteworthy event has occurred; e.g., a link has
failed, a link has been restored, or a managed resource has re-booted.

NETWORK MANAGEMENT 181

The Management
Information Base

not delivered reliably, so it is not advisable to eliminate polling in the
SNMP management model and rely solely on event notifications for di-
rection. A prudent management practice is to poll for information that
describes the operational status of all managed resources, in a “round-
robin” fashion.

Polling is useful for some aspects of network management—espe-
cially fault detection, isolation, and recovery—but there are other occa-
sions when large amounts of network data must be collected for subse-
quent review and analysis. Frequent requests for large amounts of net-
work data impose a heavy load on managed resources, and are discour-
aged. Polling can indeed be a two-edged sword; if it is applied incorrectly,
by polling too frequently, network managers (especially those with new
tools) can figuratively bring a network or managed resource to its knees.

AHE A One network manager the authors know tried polling network
resources for eight pieces of information on every interface
every 30 seconds. The managed network resources were spending more time
responding to network management queries than to routing network traffic. At
the end of a day of intensive polling, the network manager had a gigabyte of net-
work information, a network with lousy performance, and very irritable users.
With a little more experience, the network manager now polls for less informa-
tion less frequently.

The initial Internet efforts focused on three aspects of network manage-
ment: defining the minimum set of information that is useful and neces-
sary for managing the Internet and its components; identifying how that
set of information would be defined; and finally, the management proto-
col itself.

The management information base (MIB) is the logical store of in-
formation used to support network management of the Internet. The
goal in designing the MIB was to identify a minimal set of useful infor-
mation that could be implemented quickly without unduly burdening
the managed network resources. The first MIB (or MIB I) was described
in RFC 1066 in 1988. MIB I contained 114 objects, or types/ pieces of infor-
mation that were viewed as essential for managing TCP/IP-based net-
works. After additional work and experimentation, some objects were
deleted and new objects were added to the MIB, which is now called
MIB II (RFC 1213).

MIB II contains over 170 objects organized into nine groups: system,

182

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

interfaces, ip, icmp, tcp, udp, egp, transmission, and snmp (REC 1213). The
system group includes general information on the managed network
resource; examples include system name and location. The interfaces
group contains information relevant to specific interfaces on a managed
resource; examples include interface index, interface type, and interface
description. The ip, icmp, tep, udp, egp, and snmp groups contain informa-
tion relevant to the protocols, such as counts of protocol packets sent and
received.

The transmission group is one of the extension mechanisms that
allow graceful addition of network management information to MIB II. It
is structured to allow for addition of MIB subsets (called modules) specific
to transmission media. For example, MIB modules for access to the digi-
tal transmission facilities of the telephony network (DS1- and DS3-based
access; see Chapter 15) are defined in separate RFCs but are considered
to exist as branches of the MIB II transmission group. Other examples of
media-specific transmission MIB modules include the token-ring and
token-bus LANs, FDDI, the SMDS interface protocol, and frame-relay
modules (again, see Chapter 15). This modularity in the MIB structure is
one mechanism for supporting the various, changing technologies that
underlie the Internet, while leaving the fabric of network management
unchanged.

Even with all the information identified in MIB II and in the trans-
mission MIBs, more information is available for information-hungry net-
work managers. Managed objects that are applicable to a specific ven-
dor’s products or protocols may be identified and posted electronically
as enterprise-specific MIBs. “It’s raining MIBs” is a phrase frequently
used to describe the tremendous growth in the number of MIBs available
for SNMP-based network management.

AHE A Why are there so many MIBs and so many objects to r@nage?
Engineers rather than network operators have traditionally
composed MIB modules. All too often enamored with their (well, our) technolo-
gies, they (we) get carried away. As one participant in the IEEE 802.6 subcom-
mittee once suggested, they (we) “count everything that moves, and even things
that don’t move, just to be sure that they stay in the same place.” Staff at the
NSF Network Operations Center have often suggested that “any more than six
[objects] is too many.” A downside of having so many objects to keep track of is
that the essence of SNMP management is ultimately compromised; despite good
intentions, managed resources are spending too much time counting things!

NETWORK MANAGEMENT 183

The Structure of
Management
Information

The second aspect of network management addressed by the SNMP
designers was the structure and definition of the information. When the
designers tackled the “How should information be defined?” issue, they
recognized that the basic rule of simplicity was joined by another funda-
mental need—the need for extensibility. Knowing that the Internet was a
growing beast and that initial efforts to manage the beast would also
grow, the designers of SNMP were concerned that the information struc-
ture accommodate future growth. These efforts resulted in the definition
of the Structure and Identification of Management Information for TCP/IP-
based Internets (RFC 1155).

The information needed for network management is modeled as a
collection of managed objects. As described in RFC 1155, the managed
objects for SNMP-based management are defined using a subset of OSI’s
abstract syntax notation one (ASN.1; see Chapter 4). Objects are classi-
fied into types, with each object type identified by a name, a syntax, and
an encoding. The name uniquely identifies the object type; the representa-
tion of the object type name is an OBJECT IDENTIFIER, as discussed in
Chapter 5. For example, the Internet subtree (shown in Figure 9.2) is
assigned the object identifier { i so(1) org(3) dod(6) internet(1) }
—or more descriptively, “ISO, organization, Department of Defense,
Internet.”

/m’m\
(0) (1) (2
CcaTT | SO Joint ISQOCCTT
I) N
I dentified organi zati on
I
(6)
DCD
(1)
I nt er net
(1) (2) (3) (4)
Directory Managenent Experi ment al Private

FIGURE 9.2 Internet Object Identifier Tree

184

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Under the Internet subtree, there are four nodes: directory (1), man-
agement (2), experimental (3), and private (4). The MIB II standard
objects for SNMP-based management are defined in the management
branch. Proposed objects are classified under the experimental branch,
and objects appropriate for specific products are defined in the private
branch. By allocating the fourth branch to “private,” the SNMP designers
provided a mechanism for extending the naming structure to include
information that was pertinent to specific products but not required for
general use in the Internet or for network management. It is under the
private node that companies attempt to distinguish their agents from
their competitors’ by identifying even more objects to manage!

The syntax is an ASN.1 data structure used to describe a particular
object type. Examples of syntax include INTEGER, OCTETSTRING, and
NULL. The encoding identifies how instances or specific occurrences of an
object type are specified using the syntax.

It is the object instances, not object types, that are of interest during
network management operations. When an interface is causing network-
ing problems, a network manager needs to know specifically which
interface is misbehaving, not just that an interface object type exists. The
instance is identified by its object type name and an instance identifier,
which is specified in the MIB containing that object. For example, in the
interfaces table—the i f Tabl e group of MIB II (RFC 1213)—instances are
identified by i f | ndex, which is a unique integer value assigned to each
interface. The instance is depicted as the object identifier with the gener-
alized format x.y, where x refers to the object type identifier and y is the
instance identifier (Rose 1991). Consider, for example, the object
i f Oper St at us of the interfaces table of MIB II. The i f Oper St at us
value indicates the status—up, down, or testing—of an interface. For this
example, assume that the network manager has received a trap message
indicating a link-down condition on interface 7 and that the network
manager wants to verify the operational status of the interface. The object
identifier for i f Oper St at us—or the “x” part of x.y—is { iso(1)
org(3) dod(6) internet(l) ngm(2) mb-2(1) inter-
faces(2) ifTable(2) ifEntry(l) ifOperStatus(8) 1},
numerically represented as “1.3.6.1.2.1.2.2.1.8.” The object identifier for
the specific instance, interface 7, is “1.3.6.1.2.1.2.2.1.8.7.” The NMS polls
the router’s SNMP agent for the value of this instance using this object
identifier; the SNMP agent responds with a value indicating that the
interface-7 operational status is down. (Note: The pairing of the name of
an object or a variable with the variable’s value is called a variable bind-
ing, or VarBind.) Based on this knowledge, the network manager would

NETWORK MANAGEMENT 185

How Do 1
Manage It?>—
SNMP Protocol

Cet Request-PDU : : =

begin additional troubleshooting procedures, focusing on interface 7.

SNMP consists of five message types: Get Request - PDU,
Get Next Request - PDU, Set Request - PDU, Get Response- PDU, and
Tr ap- PDU messages. There are two basic formats for these message
types. The first format is used for the Get Request, Get Next Request,
Set Request, and Get Response (see Figure 9.3). The information con-
tained in these messages includes: request ID, error status, error index,
and a list of object names and values. A second format is used for the
Tr ap- PDUmessage. The information contained in this message includes:
the object identifier for the sending SNMP agent, SNMP agent network
address, trap identification, enterprise-specific trap identification, time-
stamp, and any associated objects and values.

The Get Request - PDU and Get Next Request - PDU are sent by
the network management station to the SNMP agent to request retrieval
of network management information. The Get Request - PDU includes
an object identifier (or a list of object identifiers) that identifies the infor-
mation needed by the NMS. If the receiving SNMP agent does not have
that specific object, the SNMP agent will respond with a Get Response-
PDU with a packet format identical to the Get Request - PDU, indicating
“noSuchName” in the error-status field. If the SNMP agent does main-
tain a value for the object named by the object identifier, it populates the
value field of the VarBind and returns the packet to the transport
address of the originator of the Get Request - PDU (the network-man-
agement station).

[0] IMPLICIT SEQUENCE {

request-id

Request | D,

-- an | NTEGER, used to distinguish anbng outstandi ng requests
error-status -- an | NTEGER, always O

Error St at us,

error-index -- an | NTEGER, always O

Error | ndex,

vari abl e- bi ndi ngs

Var Bi ndLi st

-- a SEQUENCE of VarBinds, where each VarBind is a nane
-- (objectNane) and val ue (objectSyntax); here, values are always 0 }

FIGURE9.3 Get Request - PDU

The Get Next Request is processed differently by the SNMP agent.
The Get Next Request - PDU also includes the object identifier (or list of

186

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

object identifiers) for the requested information; however, the SNMP
agent will respond to a Get Next Request - PDU with the next lexico-
graphical instance in relation to the sent object identifier. The Get Next
Request - PDU is referred to as the “powerful GetNext operator” (in par-
ticular, see Rose [1991]) because of this feature and the relative ease of its
implementation.?

The Set Request - PDU s used by the network management station
to request that the value of an object instance be changed by the SNMP
agent. For example, the network management station may use a Set -
Request - PDU to request an update to a routing table entry or to change
the desired status of an interface to “testing.” For sets, the SNMP agent
designers and implementers must do additional work to identify the cor-
rect combination of information needed from the NMS for the set and to
ensure that the set is performed correctly in the managed resource. Upon
completion of the set operation, the SNMP agent returns a
CGet Response- PDU with the value in the VarBind indicating the result
of the set operation.?

There are security concerns related to SNMP; for example, changes
to values of configuration-related managed objects, introduced either by
malicious intrusion or by error, can disrupt the performance of a net-
work, even bring it to a halt, and monitoring of network management
traffic can reveal user behavior patterns and perhaps help an intruder
identify critical (frequently used) resources. (The security aspects of SNMP
are discussed later in this chapter.) For these reasons, the set operation is
considered the “least simple” of the SNMP management operations.

The Tr ap- PDU, unlike the Get Request - PDU and Get Next
Request - PDU messages, is initiated by the SNMP agent. A small num-
ber of predefined events, which are identified in MIB modules, are trig-
gers for the SNMP agent to send the Tr ap- PDU message to authorized
network management stations. RFC 1157, “SNMP,” defines five trap mes-
sages: cold start, warm start, link up, link down, and authentication fail-
ure (i.e., attempts by an unrecognized NMS to get or set values of man-
aged ob-jects); others have been identified in enterprise-specific MIBs.
After the event is detected by the SNMP agent, it makes a “best-effort”

2. If the SNMP agent does not have a “next lexicographical instance” to return, then a
Get Response message indicating the “noSuchName” error will be returned.

3. Note that since SNMP is datagram-based, the Get Response- PDU may be lost; i.e.,
the NMS may receive no confirmation of the completion of the set operation. To determine
the results of a set operation, implementations are likely to run a timer following an
attempt at a set operation; if the time expires and no Get Reponse- PDU has arrived, the
NMS will issue a Get Request - PDU to determine the value of the object upon which the
set operation was performed.

NETWORK MANAGEMENT 187

attempt to notify the NMS. The underlying transport protocols (e.g.,
UDP, TCP) determine whether the network will attempt resends, etc., to
transport the message to the destination. (Note that the recommended
transport for SNMP, User Datagram Protocol [UDP], is an unreliable
datagram protocol and that, typically, there are neither retransmissions
nor notifications of loss of a Trap message.)

Examples of Trap-Directed Polling When an SNMP agent in a router
detects that it can no longer send or receive traffic across a physical inter-
face, it sends a link-down trap to the network management station. After
receiving the trap at the NMS, a network operator will initiate trouble-
resolution steps—or follow a “recipe” of actions—to identify the source
of the problem. First, the operator may use the NMS application to poll
for the interface’s operational status to verify that the status of the inter-
face is indeed “down” (i.e., the NMS will send a Get Request - PDU
requesting the value of the object i f Oper St at us in MIB II and may
receive a Get Response- PDU with the value of i f Oper St at us set to
“down”). If the operator elects to diagnose the fault in a “bottom-up”
fashion, she may poll for physical-layer information from the transmis-
sion MIB for this particular interface type. For example, if this were a
1.544-Mbps link based on the DS1 signal, the operator might request val-
ues from the DS1 configuration table (REC 1232), which contains informa-
tion on the alarm and loopback states of an interface, and the DS1 current
table, which contains counts of DS1-related errors (RFC 1232). If these
polls yielded information that isolated the fault to the satisfaction of the
network operator, the NMS might proceed by calling in a trouble report
to the telephone company; if not, the NMS might continue polling for
errors until the reason for the error condition is found.

Note that although fault isolation can be trap-directed, it need not
be so; in fact, since there are no guarantees that Trap messages will be
delivered, NMS applications often rely on repeated polling of one or
more specific objects—e.g., the i f Oper St at us—and monitor for a
change in value. In practice, more than a handful of NMS applications
still rely on an echo packet or a ping facility to determine loss of reacha-
bility to a managed resource; if the i f Oper St at us changes, or the echo
requests fail to elicit an echo reply after a given number of attempts, the
NMS application informs the operator that the status of a managed
resource has changed or cannot be determined, and the operator will
then proceed with the troubleshooting previously described.

The network-management applications in the NMS may automate
some of the protocol exchanges with the SNMP agent so that the net-

188

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

SNMP and the
Protocol Stack

Security and
SNMP

work operator does not have to manually initiate polling for trouble reso-
lution. Also, some applications automatically monitor the status of the
managed network resources. For example, some SNMP-based applica-
tions can display the managed network as a diagram of links and nodes.
The links and nodes are shown in different colors to indicate their status;
some applications show links that have gone “down” in red and links
that are “up” in green. These applications generally poll the SNMP
agents for the i f Oper St at us values of the relevant interfaces on a regu-
lar basis (or alternatively, use ping). The i f Oper St at us values are then
used as the variable to determine the color changes for the maps. This
allows for proactive monitoring of the network while minimizing the
traffic exchange required across the network. Other applications allow
the network manager to select statistics to be displayed in a graph. The
output graphically depicts trends in error and usage counts, allowing the
network manager to develop a clearer notion of trends.

SNMP is an application-level protocol. To avoid forced retransmissions
and to minimize the use of network bandwidth, SNMP was originally
specified to run over the user datagram protocol, a connectionless trans-
port protocol in the TCP/IP suite (see Chapter 12). Use of SNMP has
expanded outside of TCP/IP-based networks. Standards for its use over
other transport protocols such as AppleTalk, IPX, and OSI's connection-
less transport protocol—the so-called SNMP “over foo”* effort—have
been developed and are discussed later in this chapter.

The current, “community-string—based” SNMP offers what is known as a
trivial authentication service. A community string is an OCTETSTRING
that provides an authentication service similar to passwords. If the
receiving SNMP entity “knows” the community string received in an
SNMP message, the message is considered authentic. Implementations
are also encouraged to check that the IP address received in the SNMP
message is the correct IP address for that community string.

There are four main security concerns with community-string—
based SNMP: message modification, unauthorized monitoring of mes-
sages, masquerades, and replay. Each of these concerns is related to the
results of unauthorized access and possible changes to network-manage-
ment information that may harm the functions of the network or a man-
aged network resource.

To address these concerns, the Internet community has specified an

4. Literally, “SNMP over anything.”

NETWORK MANAGEMENT 189

enhancement to the SNMP protocol that provides for additional security
features (RFC 1351; RFC 1352; RFC 1353). The secure SNMP described in
this enhancement provides four security services: data-origin authentica-
tion, data-integrity verification, privacy, and protection from replay.

One of the challenges in defining the secure SNMP protocols was to
leave the basic SNMP messages unchanged. The designers accomplished
this by identifying procedures that left the basic packets intact and
added “wrappers” containing the enhanced security-related information
to the message formats. Obviously, even with the basic packet headers
left unchanged, there are some changes to SNMP to accommodate the
security features. These changes involve the use of SNMP parties, a data-
authentication algorithm, a data-privacy algorithm, and loosely synchro-
nized clocks. Instead of using community strings, secure SNMP uses
SNMP parties. An SNMP party represents a role that an SNMP entity
takes when performing SNMP management operations. Associated with
each SNMP party is a set of information specific to that party; this infor-
mation includes SNMP party identifier, transport address, acceptable
message size, and secret keys for the protocols. The secure SNMP proto-
col provides for use of both an authentication protocol and a privacy
protocol for protecting SNMP messages. Currently, the message digest 5
(MD5) algorithm (RFC 1321) is suggested for the authentication protocol,
and the U.S. national data-encryption standard (DES) is suggested for
use as the privacy protocol. However, the structure of the protocols is
modular, and alternate authentication and privacy protocols may be
used. The secure SNMP documents outline a system using private keys
with placeholders established for future public-key system use. The
secure SNMP documents also outline a mechanism for key management
using SNMP.

OSI Common Management: Flexibility, At A Price

ISO began developing a network management extension to the OSI refer-
ence model in the early 1980s, but did not complete this initial design phase
until almost a decade later. Many factors contributed to this delay, but per-
haps the single biggest factor was that—unlike the authors of SNMP, who
had a mutual, clearly defined objective (“manage the Internet”)—the many,
varied ISO members who developed CMIP had no single, common objec-
tive. As is the case with so many ISO standards, the OSI Network
Management Framework (ISO/IEC 7498-4: 1989) describes a model that is
incredibly general and can essentially mean almost anything to anyone.

190

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

This model subdivides the network management problem space in-
to five systems management functional areas (SMFAs)—fault, performance,
configuration, security, and accounting—and enumerates tasks that are
relevant to each area. This model was originally intended to organize
development of individual standards that would define technologies to
implement and automate each identified task. In practice, however, it
was found that most tasks are common to several areas, and the concept
of developing standards for each functional area has since been aban-
doned. The current approach is to develop standards representing sys-
tems management functions (SMFs), each of which defines a self-contained
tool that can be used by a number of management applications. For
example, the event-report management function (ISO/IEC 10164-5: 1991)
defines a mechanism that can be used to forward an identified set of
event reports to a given destination under specified conditions; the
events themselves might be relevant to any area of management.

Like SNMP, the OSI management framework and a model known
as the systems management overview (ISO/IEC 10040: 1991) identify a num-
ber of components that together provide management capabilities (see
Figure 9.4). The components include a managing system (which plays the
manager role, similar to an SNMP network management station), a man-
aged system (which plays an agent role, similar to an SNMP network ele-
ment), a management communications protocol (CMIP), and management
information. An OSI managing system serves as the interface between man-
agement applications with which network administrators deal, and the
network or system to be managed. On the other side, an OSI managed sys-
tem provides an access point to the resources to be managed, receiving

Managi ng Managed
system system
Managenent
communi cati ons
prot ocol CM P 0O
@)
: @)
Qper at i ons Agent @)
Noti fi cati ons role @)
1 O
@)
—/
Managenent
Appl i cations i nfornmation

FIGURE 9.4 OSI Management Model

NETWORK MANAGEMENT 191

What Do I
Manage?—OSI
Management
Information
Model and
GDMO

and carrying out management operations directed at specific resources
and forwarding notifications that indicate events pertaining to those re-
sources. The resources themselves are modeled as managed objects; the
collection of all managed objects (conceptual) is known as the manage-
ment information base (MIB).

AR A Althpugh these OSI conceptsl are similar to those c.lescr.ibed
previously for SNMP, the details and usage can be quite differ-
ent, as the authors show in this chapter. In fact, most of the difference—and
hence, the debate between “simple” and “common” management —lies neither in
the concepts nor in the protocol bits; rather, it lies in the management paradigm.

Like the designers of SNMP, the architects of OSI management also rec-
ognized that the resources to be managed were many and varied and
that a common representation would be necessary to manage them in a
multivendor environment. The challenge was again to find a method of ab-
stractly representing resources in a manner that would allow for com-
mon understanding but also facilitate vendor extension and future en-
hancement. The resulting approach, defined in the management informa-
tion model (ISO/IEC 10165-1: 1991) and based on object-oriented technol-
ogy and techniques, is extremely flexible; flexibility, however, does not
come without cost.

Using the management information model, resources such as sys-
tems, protocol layer entities, and devices are modeled as managed object
classes. Each managed object class has a number of properties that are
made visible over the management interface. Properties include:

« Attributes: detailed information that is known (or that might be con-
figured) about the resource

« Notifications: significant events that might occur during the lifetime
of the resource

e Operations: management requests that can be performed on the
resource

e Behavior: rules that describe the way the resource can be managed

These properties are encapsulated in a single, self-contained defini-
tion that is assigned an object class identifier. This identifier—which may
be an OBJECT IDENTIFIER, as described in Chapter 5, or a simple inte-
ger—serves as the target or source of all CMIP data units. Each property—
attribute, notification, or operation—is also assigned a unique identifier
to be included in CMIP data units.

192

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

For example, a managing system sends a CMIP packet to retrieve
the oct et sRecei ved counter attribute for all resources that are proto-
col layer entities. However, there are many kinds of protocol layer enti-
ties, and it would be impractical to represent them all as the same object
class with exactly the same set of properties. Since all protocol layer enti-
ties receive octets of incoming data, it would be nice to be able to capital-
ize on this so that you could develop one piece of code capable of han-
dling this property. Thus, what is really needed is one object class that
represents the properties that are common between all protocol layer
entities and many specific object classes that contain both that which is
common and that which is unique to a given layer. This can be accom-
plished using a technique known as inheritance, in which what is com-
mon is represented as a superclass and what is specific/unique is repre-
sented as one or more subclasses. This technique can be applied iteratively,
refining and combining superclasses into more complex and specialized
subclasses. Inheritance can also be handy for adding vendor extensions to
a standard object class or for enhancing object classes of an old product
with new features added in the next release. Even when inheritance is
not used, properties that have previously been defined can be reused in
other managed-object class definitions.

Another tool—allomorphism—can be used to take advantage of com-
monality between object classes. Allomorphism allows an actual resource
(known as a managed-object instance)® to behave as several managed
object classes. For example, a product that provides OSI class 4 transport
service (see Chapter 12) might be viewed as a generic communications
entity and connection-oriented protocol machine or as a specialized trans-
port-layer entity and connection-mode protocol machine (see Figure 9.5).
These specialized views correspond to object class definitions that are
subclassed from the generic views. The view taken in a particular man-
agement interaction depends on the level of detail in which an adminis-
trator is interested. Using inheritance when defining managed object
classes makes allomorphism easier but is not required—any classes that
share common properties can take advantage of allomorphism, so long
as the class designers reused the same attribute, notification, operation,
and /or behavior definitions.

5. A managed-object class defines the type of resource to be managed; a managed-
object instance is a particular resource of that type. For example, all OSI transport connec-
tions can be considered instances of the same OSI transport connection class.

NETWORK MANAGEMENT 193

[DM]:top
[GM]: communi cationsEntity [GM]: coProtocol Machi ne

N N

[NW: networkEntity [TP]:transportEntity [NW: coNS [TP]: conodeF

[DM] =1SO | EC 10165-2: 1@eijnitionof Managerent | nf or nati on
[GM] =1SO | EC 10165-5: 1@9%ri c Managenent | nf or mati on

[NW =1SO | EC 10737-1: 133Net wor k Layer Managenent | nformation
[TP] = 1SO I EC 10733: 10813Transport Layer Managenent | nfor mation

FIGURE9.5 Example of an Inheritance Tree

AT A The term object is used very differently in the OSI and
Internet models. OSI managed object classes are similar to
Internet object groups, whereas OSI attributes are similar to Internet object
types. These “similar but different” terms can be confusing and misleading. For
example, it is not uncommon to see a comparison between the number of
“objects” defined in OSI and Internet MIBs: an OSI MIB may define only a
dozen or so object classes but probably contains attributes numbered in the hun-
dreds—in the same ballpark as the number of object types defined by the
Internet MIB 1I. However, beneath this terminology lies a fundamental differ-
ence between the two models—in the Internet model, individual variables are
addressable units of information; in the OSI model, variables are encapsulated
within classes that are addressed as a whole.

To illustrate, consider the difference between “flat” programs, which con-
tain a simple list of statements, and structured programs, which contain a nested
hierarchy of function calls or modules. Modular programs can be more compli-
cated to develop but can be easier to update and reuse. The same can be said of
Internet and OSI “objects.”

Managed object class designers have a number of tools available to
them. The management information model also defines structuring tech-
niques like containment (a method of hierarchically organizing class defi-
nitions; refer to the discussion of naming in the following section) and
conditional packages (a method of clumping together related properties
and assigning a condition that indicates when the properties will be pre-
sent—for example, OSI transport class 4 properties are contained in a
conditional package that is present only if class 4 operation has been nego-
tiated for a transport connection). Each class definition is documented

194

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

using a format called Guidelines for the Definition of Managed Objects, or
GDMO (ISO/IEC 10165-4: 1991).

GDMO contains a number of templates—blank forms that are filled in
to represent specific managed object classes and their properties. The
OBJECT CLASS template lists the packages that make up the class. The
PACKAGE template lists the properties included in the package. Each
property is defined using an ATTRIBUTE, ATTRIBUTE GROUP, NOTIFI-
CATION, ACTION, PARAMETER, or BEHAVIOR template. Containment
relationships between classes are represented using a NAME BINDING
template. The filled-in GDMO templates define how the object class and its
properties are represented in CMIP data units. For example, the ATTRI-
BUTE template that defines oct et sRecei ved refers to an ASN.1 type
called “Count,” which is defined as an ASN.1 INTEGER (ISO/IEC 10165-2:
1991). A CMIP request packet that retrieves the oct et sRecei ved
attribute (identified by its OBJECT IDENTIFIER) causes the agent to return
a CMIP response packet containing the oct et sRecei ved attribute, the
OID, and an INTEGER value. Unlike the Internet structure of management
information, the OSI guidelines allow any ASN.1 type to be used when
defining managed object class properties.

The object-oriented philosophy of subclassing/allomorphism and
reuse described in the OSI management information model has been
used to define many resource-specific MIBs in GDMO format. Unlike the
Internet community, which initially developed MIB I to manage the
resources of the Internet, ISO has not focused its MIB® development
efforts on managing OSI stack resources. Initial MIBs, such as the OSI
Network Management Forum Library, published in 1990, were de-
veloped based on preliminary versions of the Guidelines for the Definition
of Managed Objects. The Definition of Management Information (DMI;
ISO/IEC 10165-2: 1991) and Generic Managed Information (GML; ISO/IEC
CD 10165-5: 1992), published in 1992, were the first MIBs based on the
final (IS) version of the GDMO; these might be considered the ISO equiv-
alent of Internet MIB II (RFC 1213) because they provide the foundation
on which all other resource-specific MIBs are built. For example, the
Definition of Management Information defines an object class called “Top,”
which is the ultimate superclass—it contains attributes that are inherited
by all other managed object classes. The “definitions” and generic man-

6. In this chapter and throughout the industry, the term MIB is often used to refer to a
collection of definitions. ISO standards have no single term for this concept, although man-
agement information library is often used. ISO/IEC 7498-4: 1989 defines the term MIB as a
conceptual collection of management information.

NETWORK MANAGEMENT 195

How Do 1
Manage It?—
CMIP/CMIS and
SMFs

aged information model also define object classes such as “System” and
“Network,” which are positioned at the top of the managed object tree
visible to each agent. Now that the underlying management information
model and GDMO standards have been published, dozens of resource-
specific MIBs are expected to appear by the end of 1993. The first of
these—the OSI transport- and network-layer MIBs (ISO/IEC 10737-1:
1992 and ISO/IEC 10733: 1992)—have already been completed.

As might be expected with a general model and format, the man-
agement information model and GDMO are being used by a wide vari-
ety of organizations throughout the industry, including standards bodies
(ISO, CCITT, ANSI, IEEE, even the IETF), consortia (OSF, UI, X/Open),
implementers” workshops (OIW), procurement specifiers (NIST, U.S. Air
Force), and vendors (telecom, datacom, systems). In the absence of a sin-
gle governing body like the IETF, it is more difficult to keep track of
MIBs under development, where they are published, how they are regis-
tered, etc. To address this problem, management information catalogs are
being developed to provide both paper and on-line listings for publish-
ing organizations, MIBs, and object classes. Also, since any registration
authority can provide object identifiers for GDMO-based MIBs, most
organizations act as their own registration authority; other MIB definers
use a public registration service, such as that provided by the OSI/NM
Forum.

AHE A ISO GDMO-based MIB development got off to a slow start,
but all signs indicate that an “MIB explosion” will occur in
the 1993-94 time frame as the industry enters the “publish or perish” phase.
Because MIBs to some extent dictate the choice of management protocol, avail-
ability of Internet MIBs for many technologies may already have locked OSI
management out of some potential markets (most notably, management of devices
critical for internetworking, such as routers and bridges). Thus, the eventual
market success of OSI management rides largely on the ability of MIB definers to
publish a comprehensive set of implementable GDMO-based MIBs—quickly!

Given an MIB that defines what you want to manage, the next obvious
question is “How do I manage it?” In the traditional ISO style, the au-
thors of the Common Management Information Service (ISO/IEC 9595: 1990)
answered this question by defining a set of abstract service primitives
and parameters. CMIS can be thought of as a collection of function calls
or methods that can be invoked to perform operations on or receive noti-
fications from managed-object classes. The CMIS services are: M-GET,

196 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

M-SET, M-EVENT-REPORT, M-CREATE, M-DELETE, M-ACTION, and
M-CANCEL-GET.

The CMIS M-GET service can be used to retrieve the attributes of
network and system resources—for example, to get the oct et s-
Recei ved counter attribute. This is similar to the “service” that is
provided when the SNMP Get r equest - PDU, Get Response- PDU,
and Get Next Request - PDU messages are used.

The CMIS M-SET service can be used to modify attributes—for
example, to configure OSI transport layer timer values. This is simi-
lar to the service provided via the SNMP Set Request - PDU (and
corresponding) Get Request - PDU, Get Response- PDU.

The CMIS M-EVENT-REPORT can be used to signal a noteworthy
occurrence—for example, an excessive number of retransmissions
occurring in the OSI transport layer. This is similar to the SNMP
trap message.

The CMIS M-CREATE and M-DELETE services allow the manager to
request that managed-object instances be added or removed—for
example, an event-forwarding discriminator might be created to con-
trol the flow of events from the agent to the manager (more on this
subject later in the chapter). There are no comparable SNMP mes-
sages, although MIB designers may define tables in which rows can
be added or deleted using the SNMP Set Request - PDUmessage.
The CMIS M-ACTION service allows a manager to request that any
arbitrary operation be performed on or by a resource—for example,
an ACTION might be used to activate or deactivate protocol layer
entities. There are no comparable SNMP messages, although, again,
MIB designers might provide a variable that, when set, would initi-
ate an operation.

The CMIS M-CANCEL-GET service allows a previously requested
M-GET to be aborted; the reason for this will become obvious later
in the chapter, when multiple replies are discussed. There is no
comparable SNMP message.

Each service primitive is converted into protocol data units by the

common management information protocol specification (ISO/IEC 9596-1:
1990);7 Figure 9.6 illustrates the CMIP GET packet, which is used to con-
vey the semantics of the M-GET service.

7.

CMIS and CMIP version 1 were published in 1989, vendor experimentation began, a

few show demos were held, and defects discovered during this process were reflected in

NETWORK MANAGEMENT 197

CMP-1 {joint-iso-ccitt ms (9) cnip (1) nmodul es (0) protocol (3)}
DEFINTIONS :: =
BEA N
m GET CPERATI ON
ARGUVENT Get Ar gunent
RESULT Get Resul t
ERRCRS { accessDeni ed, cl assl nstanceConfli ct,
conplexityLimtation, getListError, invalidFilter,
i nval i dScope, noSuchChj ect d ass, noSuchQhj ect | nst ance,
oper ati onCancel | ed, processingFail ure, syncNot Supported }
LI NKED { mLinked-Reply }
::= local Val ue 3

Get Argunent ::= SEQUENCE { COMPONENTS CF BaseManaged(bj ect | d,
accessCont r ol [5] AccessControl GCPTIONAL,
sychroni zation [6] IMPLIAT CM SSync

DEFAULT bestEffort,

scope [7] Scope DEFAWLT base(j ect,

filter CM SFi | ter DEFAULT and{},

attributeldList [12] IMPLICT SET CF Attributeld

CPTI ONAL }
BaseManaged(oj ect I d :: = SEQUJENCE { baseManaged(hj ect A ass bj ect d ass,
baseManagedj ect | nst ance hj ect | nstance }

AccessControl ::= EXTERNAL
CM SSync ::= ENUMERATED { bestEffort (0), atomc (1) }

Scope ::= CHA CE {
I NTEGER { base(hj ect (0), firstLevel Only (1), whol eSubtree (2) },

i ndi vi dual Level s [1] IMPLIAT | NTECGER
baseToN hLevel s [2] IMPLIAT I NTEGER }
OMSFilter ::= CHA CE {

item [8] Filterltem

and [9] IMPLIAT SET OF OM SFil ter,
or [10] IMPLIAT SET CF M SFil ter,
not [11] CMSFilter }

Attributeld ::= CHOCE { global Form[O] I MPLIA T CBIECT | DENTI Fl ER,
local Form[1] IMPLICT | NTEGER }

(hjectdass ::= CHOCE { global Form[0] I MPLIQT CBIECT | DENTI FI ER,
local Form[1] IMPLICT | NTECER }

(hj ectlnstance ::= CHA CE { distinguishedNane [2] IMPLIA T D sti ngui shedNane,
nonSpeci ficForm[3] IMPLICA T OCTET STR NG
| ocal Di stingui shedNarme [4] | MPLIA T RDNSequence }

version 2, published in November 1990. At this point, to eliminate churn and provide a sta-
ble base, ISO “froze” CMIS/CMIP for the next four years. Because version 2 is the basis for
most existing and future CMIS/CMIP-based products, this chapter discusses only version 2.

198

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Filterltem:
equality

= OHO CE {
[0] IMPLIOT Attribute,

substrings [1] | MPLIO T SEQUENCE CF CHOI CE {

initialString [0] IMPLIOT SEQUENCE {
attributeld Attributeld,

string ANY DEFI NED BY attributeld },
anyString [1] IMPLIA T SEQUENCE {
attributeld Attributeld,
string ANY DEFI NED BY attributeld },
final String [2] IMPLIAT SEQUENCE {
attributeld Attributeld,
string ANY DEFI NED BY attributeld }},
gr eat er O Equal [2] IMPLICT Attribute,
| essQ Equal [3] IMPLIAT Attribute,
pr esent [4] Attributeld,
subset Cf [5] IMPLICT Attribute,
super set [6] IMPLIAT Attribute,

nonNul I I ntersection [7] IMPLIAT Attribute }

Attribute :

;= SEQUENCE { attributeld Attributeld,

attributeValue ANY DEFINED BY attributeld }

-- The followi ng are | MPCRTed from X 500 I nfo Franmework. ..
D sti ngui shedNane ::= RDNSequence

RDNSequence :

: = SEQUENCE CF Rel ati veDi sti ngui shedName

Rel ati veDi sti ngui shedNare ::= SET OF Attribut eVal ueAssertion
AttributeVal ueAssertion ::= SEQUENCE { AttributeType, AttributeVal ue }
AttributeType ::= OGBIECT | DENTI FER

Attributeval ue ::= ANY

END

Source: ISO/IEC 9596-1: 1990

FIGURE 9.6

ASN.1 Definitions for the CMIP M-GET.request PDU

E AH AD CMIS services and SNMP messages, at the surface level, are

not all that different. CMIS provides a few additional services

built into the protocol, whereas these operations can (mostly) be accomplished

using SNMP and a cleverly defined MIB. One must dig deeper yet to see where
the true differences lie . . .

CMIP and the The OSI common management application service elements use CMIP, a
Protocol Suite connection-oriented application-layer protocol, as the means to distribute

management function and information. Like other ISO-defined applica-
tion service elements, the CMIP ASE uses association control (see Chap-
ter 10) to establish, release, and abort the underlying association. CMIP
defines a small amount of user information that gets carried in the associ-
ation-control protocol to allow the common management service user to

NETWORK MANAGEMENT 199

CMIP and
Remote
Operations

negotiate what the association is to be used for, but otherwise relies on
the normal association-control routine to set up management dialogues.
The Systems Management Overview (ISO/IEC 10040: 1991) defines a single
application context that is used between management application service
elements (see Chapter 10). When used over a full OSI stack, CMIP
assumes reliable data transfer, allowing managers and agents to go
about their business without worrying about detecting loss or retrans-
mission. Insulation from the transmission characteristics of the underly-
ing network has many benefits—management applications and agents
don’t need to be fine-tuned to “behave nicely” in each installation, and
alternative transport mechanisms can be used with minimum disruption
(for example, vendors deploy CMIP over proprietary transports as well
as OSI). However, as noted in the discussion of SNMP and UDP, connec-
tion-oriented transport implies unsolicited retransmission, which can be
costly—perhaps even fatal in times of network crisis, and more overhead
for brief management exchanges or interrogations (i.e., one must estab-
lish a connection, exchange requests and responses, and tear down a
connection, as opposed to “simply” using datagrams).

OSI common management uses the invoke/result paradigm of remote
operations; the CMIP protocol relies on an application service element
called remote operations (see Chapter 10). Every CMIS request maps to a
remote operations service. The CMIP data units also map into remote
operations protocol data units. These can be thought of as “envelopes”
into which CMIP data units are inserted for transmission. CMIS also
makes use of the linked-reply facility defined by remote operations to
cover the case in which multiple replies are generated in response to a
single invoke (see Chapter 10). Because CMIP is built on top of remote
operations, CMIS can be used in synchronous or asynchronous modes,
as described in Chapter 10.

All CMIS operations are directed to a particular resource by includ-
ing in the request a managed object class ID and a managed-object
instance name. The managed object class can be an OBJECT IDENTIFIER
(global form) or a simple integer (local form), although the “local form”
can only be used when the manager and agent have a common under-
standing—for example, to reduce overhead when using CMIP to manage
a private or proprietary network. The managed object instance name can
be either an X.500-style distinguished name, a local distinguished name
(LDN), or a simple OCTETSTRING (limited to use in a well-defined con-
text). Recall from Chapter 7 that distinguished names (DNs) are com-
posed of a sequence of relative distinguished names (RDNs); each RDN

200

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

consists of an attribute value assertion (AVA) containing an attribute ID
and value. This syntax allows unambiguous names to be constructed in
any multivendor environment by using something called a containment
tree, an example of which is shown in Figure 9.7.

The containment tree organizes managed-object classes into a hier-
archy, with the containing class being called the “superior” and the con-
tained class being called the “subordinate.” Each instance in the tree has
its own name, unique within the context of its superior—this is the RDN.
By concatenating all RDNs in a branch of the tree, you can derive a glob-
ally unique distinguished name that identifies one and only one man-
aged object instance. A local distinguished name is the name derived
from concatenating all RDNSs in a branch of the subtree contained by the
“System” managed object class.

AH A Internet naming is based on statically defined object identi-
fiers, whereas OSI naming is based on dynamically generated
distinguished names. Internet naming is always local to the agent, whereas OSI
naming may be local to the system (LDN) or global (DN). As might be expected,
OSI naming is more general and flexible than Internet naming, but at a cost—
DNs and LDNs are typically longer than OIDs and, hence, more expensive to
construct, process, and transmit.

Root

[DM]: System

[TP] : Transport Subsyst em

/\

[TP] : conodePM [TP] : t SAP

[TP : transport Connecti on

Not e: Nanesf or ani nst anceof t het ranspor t Connect i onnanagedobj ect cl ass:
RON={ Id="1," Value="A" }
LDN ={ Transport Subsyst emRDN + conodePMRDN + t r ansport Connect i on RDN }
DN ={ SystemRDN + LDN}

FIGURE 9.7 Example of a Containment Tree

NETWORK MANAGEMENT 201

CMIS allows, as an option, scoping and filtering capabilities, which
enable the same operation to be performed on several resources by issu-
ing a single request. The scope parameter identifies a part of the contain-
ment tree (a subtree)—for example, all instances contained by system X.
The filter parameter carries a conditional statement or predicate that can
be tested against attribute values to further limit the operation—for ex-
ample, all instances of class “transport connection” with operational state
“disabled.” A synchronization parameter allows the operation to be treat-
ed as atomic (do it all or do nothing) or best effort (perform the operation
on as many instances as you can, and inform me of the result). These
optional fields allow for the composition of very powerful CMIS re-
quests, such as “Delete all transport connections in system X that are dis-
abled.” Figure 9.8 demonstrates how remote operations linked replies

Managi ng Managed
system systen

w

M SET. r equest
(confirmed**)

RO V- M Set - Request —— M SET. i ndi cat i on

M SET. r espons

| RA V- Li nked- Repl y | /

| RA V- Li nked- Repl y |

m< — H

RORS- M Set - ResponsH

\
-
-—

/

' M Set . confirm

**CMIS M-SETs can be either confirmed or non-confirmed, at user discretion

FIGURE 9.8 Sample M-SET Operation

202

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

System
Management
Functions

might be used by CMIP to return the results of such an operation, one
reply per managed object instance (linked replies and parent-child opera-
tions are discussed in Chapter 10). In the figure, a managing system calls
upon a managed system to perform the sequence of change operations
associated with the M-SET.request “delete transport connections in your
system that are disabled.” A single CMIS request is transferred by invok-
ing remote operations. The M-SET.request is conveyed in a remote opera-
tions packet (in the figure, the RO V- M Set - Request packet). As the
agent at the managed system deletes each transport connection (each
managed-object instance), a successful result is returned using remote
operations linked replies (in Figure 9.8, one RO V- Li nked- Repl y pack-
et would be returned for each deleted managed-object instance). The
completion of the management operation would be signaled back to the
managing system by the arrival of a remote operations (successful) result
packet (in Figure 9.8, the RORS- M Set - Response).

AH A CMIS scoping and filtering provide capabilities that go beyond
the “all-powerful” SNMP GetNext but have been criticized as
costly to implement and support. This is one example of a key philosophical dif-
ference between the authors of SNMP and CMIP—SNMP places the burden of
management operations on the network management station, whereas CMIP
allows for distribution of the load between manager and agent. It is important to
note that CMIP does not require load distribution—it can be implemented
without scoping or filtering capability. Further, it can be arqued that scoping
and filtering must be provided for somewhere and that providing this capability
as part of the management protocol simplifies management application develop-
ment and reduces network management traffic. With SNMP, the management
application issues many GetNext messages, sifts through the results, and figures
out what is really of interest; with CMIP, the management application issues a
single scoped M-GET, and the agent does the sifting, returning only the inter-
esting stuff. Finally, it is impossible to provide the same semantics without scop-
ing and filtering—attribute values change, and testing them as close to the
resource as possible minimizes (but does not eliminate) temporal flux.

System management functions (SMFs) provide tools—protocols and
managed object classes—to implement routine management tasks com-
mon to many applications. The initial batch of SMFs, published in late
1991, provide the following services:

+ The Object-Management Function (ISO/IEC 10164-1: 1991) provides

NETWORK MANAGEMENT 203

pass-through services corresponding to all CMIS operations,?
and a few common notifications: at t ri but evVal ueChange,
obj ect O eati on, and obj ect Del et i on. These notifications are
defined in ISO/IEC 10165-2: 1991 and appear in many GDMO-style
managed object classes.

 The State Management Function (ISO/IEC 10164-2: 1991) provides
a few common state attributes and a common notification that can
be used to signal changes in state. For example, most resources can
be operational or disabled, some allow administrative control over
use of the resource, and some can tell whether or not they are in
use. The SMF allows this information to be represented in the same
way, in any managed object class, allowing common management
applications to be developed to monitor and manage the status of
any resource.

« The Attributes For Representing Relationships Function (ISO/IEC
10164-3: 1991) provides common relationship attributes and a change
notification that allow the interrelationship between managed ob-
ject classes and instances to be captured in a consistent manner.

 The Alarm-Reporting Function (ISO/IEC 10164-4: 1991) defines com-
mon notifications to signal faults detected by the agent system.
Again, common representation of this information facilitates devel-
opment of common fault monitoring applications.

+ The Event Report Management Function (ISO/IEC 10164-5: 1991) and
log control function (ISO/IEC 10164-6: 1991) allow managers to con-
trol which notifications will be sent as CMIS M-EVENT-REPORTSs
or logged by the agent system.

Many other SMFs are currently available or under development,
including those aimed at security, performance, and accounting manage-
ment. For example, Objects and Attributes for Access Control (ISO/IEC
10164-9: 1991) allows security to be provided at the management object
class, instance, and even operation level.

The event report and log control functions enable manager control
by using object-oriented techniques. For example, the event report man-
agement function allows a manager to turn event forwarding on or off or
temporarily suspend it, to specify primary and backup destinations to

8. Basing management applications and agents on the object management function
(OMF) pass-through services is intended to insulate them from the underlying protocol
(CMIP) and therefore allow substitution (for example, to use a local RPC mechanism
instead). In practice, it turns out that there is another big advantage to using OMF instead
of CMIS—OMF allows an implementation to conform to only the agent “half” of CMIS,
whereas CMIP requires support for both roles.

204

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Profiles

which the events should be sent, to indicate dates and times during
which forwarding should be enabled, and to specify detailed filters that
can be used to selectively forward only a few events. Similarly, the log
control function allows control over logging of notifications at the agent
system, for subsequent retrieval by the manager.

Another key philosophical difference between OSI and Internet
AH A

management is event handling. As mentioned previously,
SNMP uses (but does not rely upon) trap-directed polling, in which only a
few critical events are detected by the SNMP agent, to be supplemented by peri-
odic or trap-initiated polling by the SNMP NMS. On the other hand, OSI might
be considered event-driven (recall that CMIP operates over a transport connec-
tion; hence, the delivery of events is reliable). GDMO-based managed object
classes tend to be defined with a number of notifications intended to signal
changes in the resource. The event report and log control functions provide man-
agement control over forwarding and logging so that every little notification
doesn’t end up being transmitted or stored. The end result is enormous flexibility
for managers and thus for the management application —network or system
administrators can pick and choose what they want to poll for and what they
want to be notified about. And—you guessed it—an enormous cost for the
agent, which must detect, filter, throw away, store, and/or forward these notifi-
cations. Cost can be reduced by clever implementations that propagate filter cri-
teria back into the resources themselves and pragmatic MIB design (use condi-
tional packages to allow implementation flexibility, avoid notifying about any-
thing and everything you can think of). Finally, it is possible to use CMIP in a
polling mode, without being event-driven. In fact, most initial implementations
of CMIP did just this, for the sake of simplicity —and because the event report
and log control functions (ISO/IEC 10164-5: 1991; ISO/IEC 10164-6: 1991)
were completed after CMIP (ISO/IEC 9596-1: 1990).

It is impossible to conclude any discussion of OSI without mentioning
international standardized profiles (ISPs) for CMIP. International standard-
ized profiles identify a collection of base standards, select options con-
tained within the standards, and specify pragmatic constraints (for ex-
ample, limiting field lengths; see Chapter 2). Because OSI standards are
layered and have so many options, ISPs are necessary to enable vendors
and users to build and buy products that can interoperate. For OSI man-
agement, final ISPs are available for CMIP, and draft ISPs are available
for the system-management functions. For example, the Enhanced Man-
agement Communication profile (ISO/IEC 11183-3: 1992) specifies detailed

NETWORK MANAGEMENT 205

requirements for CMIP, ROSE, ACSE, presentation, and session proto-
cols. The Basic Management Communication profile (ISO/IEC ISP 11183-3:
1992) specifies similar requirements but excludes scoping and filtering
features. Any vendor providing a CMIP-based product today can be
expected to claim conformance to one or both of these profiles.

Putting It All Together

Mix-and-Match
Protocols: SNMP
over Foo, CMIP
for the Internet

Having discussed the capabilities that Internet and OSI management
ASEs have to offer, it is certainly appropriate to mention that, by and
large, network and systems administrators really don’t care a whit about
management paradigms, robustness, elegance, or which “ASE” they use
(if, in fact, they even know what an ASE is). They care about managing
their enterprise. Today more than ever before, it is vital to provide
“plug-and-play” technologies that work together to solve customer prob-
lems. Some of the strategies that have thus far been developed for inte-
gration, coexistence, and migration of management technologies are
mentioned in the following subsections.

Over the past few years, there have been several attempts to “bridge the
gap” between CMIP and SNMP, including the following:

o CMIP for TCP/IP-based internets (RFC 1095) was originally intended
as a long-term management solution for the Internet. CMOT
defined the use of CMIP/ROSE/ACSE over a specialized version
of the OSI presentation layer (RFC 1085) over TCP/IP. This
approach has since been discarded by the Internet community fol-
lowing a network-management “bake-off.”

SAH A At a point during the parallel development of SNMP and
CMOT at which no further progress could be made in commit-
tee, the SNMP and CMOT camps decided to end the debate with a bake-off. It
was jointly agreed that following several months of development, the implemen-
tation worthiness of the two proposals would provide the final input. According
to Internet folklore, the SNMP camp was able to demonstrate multiple, interop-
erable implementations, and the CMOT camp had none.

e More recently, the IETF considered a full-blown CMIP for the
Internet (RFC 1189), which would eventually obsolete the original

206

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Dual-Stack
Approach: Hide
It Under the API

CMOT effort. This approach glued the entire OSI CMIP upper-layer
stack (down through session) onto TCP/IP using RFC 1006. A
GDMO-based version of the Internet MIB 11, called the OIM MIB II
(RFC 1214) was to be developed. This MIB was intended to allow
management of Internet resources using CMIP protocols. This
activity came under IESG review in the spring of 1992, and the
working group was disbanded due to inactivity. Members of the
X/Open and OSI Network Management Forum expect to produce a
CMIP over TCP/IP using RFC 1006 as described earlier; however,
RFC 1214 will be abandoned in favor of the CMIP profiles men-
tioned in the preceding subsection.

» “SNMP over OSI” (RFC 1418) and, more recently, “SNMP over Foo”
(read “anything”) RFCs have been developed by the IETF to glue
SNMP over non-UDP/TCP transport technologies. This approach
allows a single management protocol (SNMP) to be used in virtual-
ly any networking environment. The MIBs are different from those
developed for CMIP, but for multiprotocol networks, and for those
configurations where SNMP agents cannot be reached using UDP,
these extensions are expected to serve the Internet community quite
well.

+ Although little standards activity is involved, CMIP network man-
agement systems vendors, cognizant of the market availability of
communications equipment that supports SNMP agents, have
developed proxy elements in their CMIP-based products to gather
information and alarms from SNMP agents and integrate them into
the management capabilities they offer.

It is possible, and in some circumstances, quite pragmatic, to offer “dual-
stack” products, which provide for concurrent application use of more
than one technology (OSI and TCP/IP). In fact, “dual stack” is increasingly
becoming “multistack,” in which supporting technologies are not limited
to Internet and OSI protocols but include RPC-based communication envi-
ronments and the like. When more than one technology is used, applica-
tions can be insulated from this fact by using a common, transparent appli-
cation programming interface (API). For example, the X/Open management
protocols API provides programmatic interfaces to both SNMP and CMIP
and makes some attempt at limited transparency, at least for services that
are common to both management protocols—for example, an
mp_get _r equest “C” function call is provided that can initiate an SNMP
Get message, a CMIS M-GET.request, or perhaps even a local RPC query.

NETWORK MANAGEMENT 207

On the Horizon:
Simple
Management
Protocol (SMD) ...
or Is That
“SNMPv2"?

Unfortunately, the way in which a MIB is defined often precludes
application transparency—for example, a MIB that uses CMIS M-ACTION
cannot be managed using SNMP unless it has been translated to an
Internet SMI-style MIB and a gateway function is built to map between the
two MIBs below the level of the API. This approach is currently undergoing
specification and development by consortia such as X/Open and the
OSI/NM Forum.

Like most tools, network management isn’t very useful if it's not de-
ployed. As a practical consideration, the authors and advocates of SNMP
carefully guarded the protocol and management framework against the
sort of meddling that caused the OSI common management effort to
become bogged down in definition so that it could be widely deployed
as quickly as possible. The advent of the secure SNMP enhancements,
however compatible with the present SNMP standards, clearly called for
revisions to existing implementations. This posed a problem of no small
measure to the SNMP community: there were other minor deficiencies
that the Internet community would eventually wish to address, and the
thought of two revisions and accompanying transitions was, to say the
least, troublesome. Following a March 1992 IESG call for contributions
on the future of network management for the Internet, a proposal for a
Simple Management Protocol was presented to the IETF in August 1992.
The proposal, currently a set of seven Internet drafts, provides a strategy
for coexistence with the current SNMP, addresses some of the identified
weaknesses of the SNMP framework, and claims to improve SNMP per-
formance. SMP uses the secure SNMP enhancements but, as an out-
growth of implementation experience, it has exposed and consequently
solved some operational problems encountered. (The result is that SMP
implementations deviate from the secure SNMP RFCs, and the changes
the SMP introduces to secure SNMP are now under consideration in the
IETF; once approved, the secure SNMP RFCs will be made historical,
and there will be only one transition for internetwork management; i.e.,
from SNMP version 1 to the eventual SMP/SNMPv2 RFCs.)

The more visible SMP enhancements to the SNMP include a change
in the composition of the Trap message (it is now identical in structure to
the other SNMP data units). A new message type, dubbed the “awe-
some” GetBulk operator, improves the way an SNMP manager retrieves
large numbers of managed objects. A large set of error codes has been
identified to improve exception reporting. Transport mappings of the
SMP onto OSI, AppleTalk, and Novell/IPX as well as the recommended
UDP are provided. There are also a considerable number of changes to

208

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

the structure of management information, including some new data
types (enumerated BITSTRING and 64-bit counters, an OSI network
address data type). Finally, and notably, an Inform Request message has
been introduced, with an accompanying MIB, to be used for manager-to-
manager communications; the | nf or TRequest - PDU can be used as an
acknowledged event notification and to transfer information between
network management stations. Network management stations can thus
operate in a dual role—manager of resources as well as a resource or sub-
ordinate to other NMSs. A very fortuitous side effect of the timing of the
introduction of SMP is that extensions for security, as well as improve-
ments both desired and necessary, can be incorporated into existing
implementations in a single version change, and with a well-defined
coexistence plan.

EAHAD During recent deliberations about SMP, an IETF member
preferring anonymity suggested that SMP “is kinda like a
datagram version of CMIP, but without scoping and filtering.” Indeed, SMP
seems to have addressed many of the much-ballyhooed shortcomings and defi-
ciencies, and it will likely refuel the SNMP versus CMIP fire. If the existing
base of SNMP agent implementations can be upgraded quickly, and the claims of
improved and more robust functionality are warranted, SMP as SNMP version
2 will extend the market lead it currently holds over CMIP. Given that transport
mappings are provided to allow SNMP to operate over OSI, AppleTalk, and
Novell/IPX, and taking into consideration the practical difficulties of managing
a multiprotocol Internet, the argument that there exists a single management
framework to manage all aspects of a diverse Internet may be a bit premature
and somewhat overstated, but it remains compelling.

Where To from Here?

Most of the attention paid to network management is focused on the
management protocols—SNMP and CMIP—and frameworks. However,
if you ask a network administrator about products based on these proto-
cols, you will find that although having standard protocols for network
management is important, daily operations staff are still concerned that
many aspects of network operations remain unattended, and network
administrators will quickly tell you that reachability programs like ping,
traceroute, netstat, and similar utilities continue to be important compo-
nents of daily network operations.

NETWORK MANAGEMENT 209

The UNIX ping command uses the echo request datagram of the
Internet control message protocol (ICMP; see Chapter 13) to evoke an
echo reply datagram from a designated host on a TCP/IP network. It is
by far the most commonly used fault-isolation tool. Ping provides a
means of determining whether a host is “IP-reachable” and is useful for
obtaining (a coarse measure of) round-trip times; many network man-
agement stations use ping in an automated fashion to monitor network
connectivity.” An OSI version of echo/ping is described in RFC 113910
and will be incorporated as two new packet types (request and reply) in
the second edition of ISO/IEC 8473, the OSI Connectionless Network Layer
Protocol (CLNP; see Chapter 13), providing OSI network operations folks
with a tool whose features are equivalent to the ICMP-based ping.

Traceroute is a program that determines the route an IP packet
would follow from a source to a designated host by issuing a series of
user datagram protocol (UDP) packets directed to a bogus destination
port and with the internet protocol “time to live” set to intentionally small
values, to elicit error messages from gateways that are attempting to for-
ward the UDP packet. A gateway that receives the UDP packet but cannot
forward it because its time to live has expired must return an ICMP error
message “time exceeded.” From these messages, the traceroute program
constructs a list of gateways that comprise the route between the sender
and the destination. The “probes” begin with a time to live of 1 and
increase by 1 until an ICMP message “port unreachable” is returned, indi-
cating that the host has been reached, but the specified port is an incorrect
one. Traceroute is an effective diagnostic tool for network operations; a
companion OSI traceroute program has been developed by members of
the Network OSI Operations (NOOP) group within the IETF.

Network administrators are also quick to point out that there is too
much effort directed at “managing everything that moves . ..,” and MIB
mania has left vendors with little alternative but to continue to focus
their efforts on the development of new MIBs. At the agent level, MIB
mania increases the management burden; equally problematic is that
additional MIB development in network management applications is
performed at the expense of creating better diagnostic aids and applica-

9. It is interesting to note that in the manual pages of some UNIX OSs, automating
ping is discouraged; for example, the manual page for ping that accompanies the
MACHTe" UNIX® system from Tenon Intersystems says ping “should be used primarily
for manual fault isolation. Because of the load it could impose on the network, it is unwise
to use ping during normal operations or from automated scripts.”

10. This RFC is soon to be obsoleted; the replacement RFC will eliminate one of the two
elective ways to ping and align exactly with the ISO standard.

210

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

tions that “heal” networks without manual intervention. There is also
altogether too much effort directed at simply presenting information to
network administrators in the jazziest manner; graphic user interfaces
aside, most of the network management systems today offer little to sim-
plify the task of managing. SNMP and CMIP can provide solicited events
or traps, but all too often, a human must still intervene to identify and
solve the underlying real-world problem. Tools now exist to measure
network utilization, but more and better tools are needed to assist in net-
work analysis and capacity planning and provisioning.

If you are in network operations, before getting all worked up
about which protocol you use, be forewarned: you won’t be giving up
your pager any time soon.

AH A A closing commentary on SNMP versus CMIP: It should be
apparent that entirely different perspectives and mind-sets
drove and still drive SNMP and CMIP. CMIP is to a large extent telephony-driven
and based on a telco view of the composition of packet and fast-packet networks.
This view is inherited in part from telephony operations and managing voice
connections. In this view, switching systems are comprised of two components:
the switching or network elements and computers that are used to manage
groups of network elements, called supervisory systems. Supervisory systems
are themselves managed by yet another and typically more centralized tier of
operations systems. In this environment, the OSI common management
framework is imposed between the supervisory and operations systems (the man-
agement framework and protocol used between supervisory systems and network
elements is often proprietary). The popular term for this is management of
managers. In theory, the network elements—the equivalent of routers and
bridges of the public networks —don’t bear the burden of CMIP/CMIS (in prac-
tice, counting and reporting often take their toll). From this example, it can be
seen that advocates of OSI common management may have based their frame-
work on the assumption that the managed resources themselves do an awful lot
of management. In SNMP, which was developed with a datagram internetwork-
ing paradigm in mind, there is an assumption that management is not the prin-
cipal function of the managed resource—routers, bridges, and hosts all have better
things to do with their CPU/links/memory than manage themselves, and so
management overhead for these resources should be small (in fact, it can be
argued that left to manage themselves, they would inevitably miss the bigger pic-
ture of the network and screw up). Is this insight enough to appreciate the differ-
ences? Hardly enough to fully appreciate them, but enough to start.

MANAGEMENT APPLICATION SERVICE ELEMENTS 211

Conclusion

This chapter has compared the “simple” network management frame-
work for the Internet to OSI’s “common” management approach. Both
SNMP and CMIP base services on interactions between a manager and
its agents and, by extension, interactions between managers. Both model
management information in an object-oriented fashion and use abstract
syntax notation one for object typing, identification, and encoding. The
similarities end there. Through examples, the authors demonstrated that
the management paradigms of SNMP and CMIP are vastly different and
showed how SNMP attempts to place the burden of network manage-
ment on the managing side, while CMIP distributes the burden between
a manager and its agents. It was suggested that this difference is partly
attributable to what the Internet (traditionally and decidedly a data com-
munity) and OSI (strongly influenced by the telephony community) inter-
pret as managed network resources. Finally, the chapter called readers’
attention to the fact that even after one decides which management frame-
work is best for his or her networking environment, there are other,
equally important management tools to consider and briefly described
what TCP/IP and OSI offer as management instrumentation to comple-
ment network management protocols.

“CORE” APPLICATION
SERVICE ELEMENTS

Open any toolbox—irrespective of whether it belongs to a plumber, a
carpenter, an electrician, or an automobile mechanic—and you will find
a common, or “core,” set of tools: subtleties aside, a pair of pliers, a screw-
driver, and a wrench are useful and necessary tools, whether the applica-
tion is plumbing, carpentry, electrical work, or automotive repair. In gen-
eral, distributed applications also rely on a set of core capabilities; i.e.,
service elements that provide:

« The ability to initiate and terminate communications across a net-
work (in this case, the OSI networking environment) and to ascer-
tain prior to attempting to transmit data that the called application
has all the facilities and capabilities required to interpret and oper-
ate on the data about to be sent. In OS], the association control service
element (ACSE) provides these capabilities.

« The ability to structure conversations between distributed applica-
tions (for example, providing the ability for applications operating
over a full-duplex connection to “take turns”) and the ability for an
application to recover from disruption of underlying communica-
tions services without loss of data (for example, providing the ability
for peer applications to indicate “Yes, I heard what you said up to
the point where we were disconnected, and I've committed it to
memory [written it down]”). In OSI, the reliable transfer service ele-
ment (RTSE) provides application access to the complement of dia-
logue control capabilities offered in OSI: activity and turn manage-
ment, synchronization, and resynchronization.

+ The ability to perform functions at remote computers (remote oper-

213

214

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

ations, remote procedure calls). In OSI, the remote operations service
element (ROSE) enables an application operating at one computer to
request or direct an application operating at a second computer (or
multiple computers) to share part of the processing burden. Con-
ceptually, a remote operation might say, “Do this for me and
inform me of the result when you’ve completed the task,” or “Do
this for me while I go off and do something equally important.
Don’t interrupt me unless something goes wrong.”

These application service elements are the nucleus of an OSI appli-
cation tool kit. (Readers are left with the exercise of determining which
application service element corresponds to the pair of pliers, the screw-
driver, and the wrench.)

SATH A Identifying only' these appl.icm:‘ion service. elements as “core”
elements is admittedly subjective. OSI tried to do so formally
in the early stages of application layer standardization and failed because no con-
sensus could be reached. In theory, the set of basic application service elements is
open-ended; many others—notably, commitment, concurrency, and recovery
(CCR); remote database access (RDA); and message handling—might eventually
be included. Association control, reliable transfer, and remote operations, however,
are likely to be included in nearly everyone’s view; the treatment of “core” appli-
cation service elements in this chapter, then, represents a minimalist’s view.

Association-Control Service Element

The association control service element is included in all application con-
text specifications! and is used to form a connection (called an association)
between application entities. In fact, the facilitating aspects of establishing
an association—notably, the exchange of naming information (especially
application entity titles) and negotiation of the facilities that the commu-
nicating applications will need in order to communicate—are ACSE'’s
primary role.

It is useful to continue with the analogy of association control’s
playing the role of a facilitator in OSI application-to-application commu-

1. Technically speaking, the ACSE service definition strongly suggests this, stating that
“it is expected that the ACSE will be included in all application context specifications”
(ISO/IEC 8649: 1988). The OSI application layer structure standard (ISO/IEC 9545: 1989),
written a year later, states that the ACSE “is a necessary part of AEs.” The reason for this
ambiguity is revealed in a later discussion of modes of ACSE operation.

“CORE” APPLICATION SERVICE ELEMENTS 215

The ACSE
Service and
Protocol

nications. In creating an application association, the association control
service element truly facilitates a conference session; it identifies:

« Who will be talking (which application entities)

« What subjects will be discussed (which application service ele-
ments)

 The language(s) that will be spoken during the conference session
(what abstract syntaxes will be exchanged)

» The “props” required for the conference session (what the presen-
tation and session connections should look like)

Once it has established an association between two or more appli-
cation entities, the association control service element fades into the
background, reappearing only to assist in closing the conference session
(and in extreme cases, to interrupt or cancel it).

The formal mechanisms for establishing an application association are
described in a service definition (ISO/IEC 8649: 1988) and a protocol
specificaiton (ISO/IEC 8650: 1988). There are four association control ser-
vices: A-ASSOCIATE provides “connection” establishment, A-RELEASE
provides an orderly “disconnect,” and the A-P-ABORT and A-U-ABORT
services offer provider- and user-initiated disruptive “disconnects.”
Formally speaking, in establishing an association, 30 parameters are
defined for the A-ASSOCIATE service. Simplified greatly, application
entities use the parameters of the A-ASSOCIATE service primitives to
identify:

» Themselves

 The application context required for this association
 The presentation context required for this association
+ Presentation service requirements

+ Session service requirements

(The complete set of A-ASSOCIATE service parameters is presented
in Table 10.1.)

To invoke the service, an association control user (a.k.a. the re-
quester) issues an A-ASSOCIATE.request primitive. The requester may be
another standard application service element or a user element. In the
normal mode of ACSE operation, association control uses some of the para-
meters passed in this request to construct the A-ASSOCIATE.request
packet (in Figure 10.1, the AARQ APDU); most of the parameters con-
veyed in the AARQ APDU are identifiers. Application entities identify
themselves through the exchange of their names—their application entity

216

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TABLE 10.1 A-ASSOCIATE Service Parameters

Parameter Name Request Indication Response Confirm

Mode User option Mandatory(=)

Application-context name* Mandatory Mandatory(=) Mandatory Mandatory(=)
Calling AP title* User option Conditional(=)

Calling AE qualifier* User option | Conditional(=)

Calling AP invocation identifier*
Calling AE invocation identifier*
Called AP title*

Called AE qualifier*

Called AP invocation identifier*
Called AE invocation identifier*
Responding AP title*

Responding AE qualifier*
Responding AP invocation identifier*
Responding AE invocation identifier®
User information

Result

Result source

Diagnostic®

Calling presentation address

Called presentation address
Responding presentation address
Presentation context definition list*
P-context definition result list*
Default presentation context name*
Default presentation-context result®
Quality of service

Presentation requirements™

Session requirements

Initial synch point serial number
Initial assignment of tokens

Session connection identifier

User option
User option
User option
User option
User option
User option

User option

See ISO 8822
See [SO 8822

See ISO 8822
See ISO 8822

See ISO 8822
See [SO 8822
See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822

Conditional(=)
Conditional(=)
Conditional(=)
Conditional(=)
Conditional(=)
Conditional(=)

Conditional(=)

See ISO 8822
See [SO 8822

See ISO 8822
See ISO 8822
See ISO 8822

See ISO 8822
See [SO 8822
See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822

User option
User option
User option
User option
User option
Mandatory

User option

See ISO 8822
See ISO 8822

See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822

Conditional(=)
Conditional(=)
Conditional(=)
Conditional(=)
Conditional(=)
Mandatory(=)
Mandatory
Conditional(=)

See ISO 8822
See ISO 8822

See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822
See ISO 8822

*Not used in X.410-1984 mode of operation.

Note: In this table, the notation “(=)" is used to indicate that the value of the parameter (when it is present) in an indica-
tion or confirm primitive must be the same as the value of the same parameter in the corresponding request or response
primitive (respectively). The notation “See ISO 8822 is used to indicate that the requirements for the parameter are

specified in the service definition for the presentation layer (ISO/IEC 8822: 1988; see Chapter 11).

“CORE” APPLICATION SERVICE ELEMENTS 217

AARQ apdu :: =

{ protocol -version

titles—which are defined as having two components: an AP title plus an
AE qualifier (see “Names,” in Chapter 5). Application entities further
qualify this identification with AE invocation identifiers, which distinguish
application entities at the process or run-time level.

[APPLI CATI ON 0] SEQUENCE
[0] IMPLIAT BIT STRNG
{ versionl (0) }
DEFAULT versi onl,

appl i cati on- cont ext - nane [1] Application-context-nare,

called-AP-Title

[2] AP-title

CPTI ONAL,

cal l ed- AE-Qualifier [3] AEqualifier
CPTI ONAL,

cal | ed- AP-1nvocation-identifier [4] AE-invocation-identifier
CPTI ONAL,

cal | ed- AE- I nvocation-identifier [5] AE-invocation-identifier
CPTI ONAL,

calling-AP-Title [6] AP-title
CPTI ONAL,

calling-AEQualifier [7] AEqualifier
CPTI ONAL,

cal l'i ng- AP-Invocation-identifier [8] AE-invocation-identifier
CPTI ONAL,

cal l'i ng- AE-I nvocation-identifier [9] AE-invocation-identifier
CPTI ONAL,

i npl ement ati on-i nf ormati on [29] IMPLIAT Inpl ement ati on-dat a
CPTI ONAL,

user-information [30] IMPLIAT Associ ation-information
CPTI ONAL

}

(Source: ISO/IEC 8650: 1988)

FIGURE 10.1 ASN.1 Definition of the AARQ APDU

Why are AE invocations and AP invocations identified? Suppose
an association is formed between an application entity “Fred” on a com-
puter “Flintstone” and an application entity “Barny” on a computer
“Rubble.” An integer is assigned to identify the run-time process (the
application process, or AP) executing application entity Fred on Flint-
stone and similarly for application entity Barny on Rubble. Suppose the
process containing Fred is unexpectedly terminated, but Barny contin-

218

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

ues. When Fred is resurrected as a new run-time process, new invocation
identifiers are assigned so that in subsequent communications, Barny
will know that it is communicating with a different process than before
and hence can determine that the interruption in communication was
due to a run-time process failure at Flintstone. Conversely, if communi-
cation between Fred and Barny is interrupted, and both processes contin-
ue, once communication is restored between Flintstone and Rubble, both
application entities will be able to recognize that they are communicating
with the same invocation of their peer.

A singularly important parameter passed in the A-ASSOCIATE.re-
quest primitive is the application context name. The application context
name identifies the set of application service elements required by the
distributed application initiating this communication.

The information passed to ACSE in the A-ASSOCIATE. request
primitive is used to construct a corresponding A-ASSOCIATE request pro-
tocol data unit. The ASN.1 definition of this PDU is given in Figure 10.1.

An application that uses the directory system protocol (described in
Chapter 7), for example, uses the association control service element and a
set of defined remote operations. The application context di r ect or ySys-
t emAC that describes this is “named” by the OBJECT IDENTIFIER i d-
ac-di rect orySyst emAC; the ASN.1 definition for this application con-
text is:

di rect or ySyst emAC

APPLI CATI ON- CONTEXT

APPLI CATI ON SERVI CE ELEMENTS {aCSE}

Bl ND DSABi nd

UNBI ND DSAUNnbi nd

REMOTE COPERATI ONS { r OSE}

CPERATI ONS CF {

chai nedReadASE, chai nedSear chASE,

chai nedModi f yASE}

ABSTRACT SYNTAXES {

i d-as-acse, id-as-directorySystenAS}

;i = {id-ac-directorySystenACG

Thus, when creating an association between two (directory) appli-
cation processes that wish to use the directory system protocol, the re-
questing application entity assigns the information object appl i ca-
ti on-cont ext - nanme (one of the data in the AARQ APDU, shown in
Figure 10.1) the value of the OBJECT IDENTIFIER i d- ac-di rectory
Syst emAC. Using the application context name, the called application
entity determines the set of application service elements that must be
available to support this distributed application.

The requester also identifies the abstract syntaxes (modules of

“CORE” APPLICATION SERVICE ELEMENTS 219

ASN.1 “code”; note that this, too, is derived from the application con-
text), the presentation services that are required, and the presentation
address of the called association-control user (a.k.a. the “accepter”) in the
A-ASSOCIATE.request primitive. These parameters are not conveyed to
a remote association control “peer” using the association control proto-
col. They are submitted in the A-ASSOCIATE.request by the requester so
that the association control service provider can make appropriate
requests when establishing a presentation connection to support the dis-
tributed application; they are used to compose a P-CONNECT.request
primitive (see Chapter 11).

AHE A Why should the associati?n control s'ervice user havfz knowl-
edge of both the presentation and session service requirements,
and why must these be indicated in an A-ASSOCIATE.request? Part of the rea-
son lies in the parallel development of the CCITT X.400 Message Handling
System recommendations and the OSI upper layers. CCITT had developed mes-
sage handling standards with the understanding that the T.62 protocol devel-
oped for teletex would be used at the session layer. What Marshall Rose
describes in a “soapbox” as “largely hysterical reasons” were simply political:
accommodating the perceived (exaggerated) “embedded base” of teletex termi-
nals in X.400 was considered “strategic,” and T.62 functions were effectively
“erandfathered” into the OSI session layer, rendering moot any argument about
correct placement of these functions elsewhere.

What would have been a “correct” solution? There are at least two schools
of thought on this subject: (1) the session and presentation functions are in the
wrong layers and should have been identified as application layer functions in
the first place, perhaps to the extreme of eliminating the session layer entirely;
and (2) the functions of the upper layers are not inherently hierarchical, and a
complete rethinking of the upper layers was appropriate. In fact, aspects of both
schools of thought exist: the pass-through of presentation and session require-
ments is a concession to the first school of thought (the application layer ulti-
mately controls what goes on in the session layer, and where the protocol oper-
ates is a formality) and the definition of application service elements in the OSI
Application Layer Structure standard is a concession to the second school of
thought (you have building blocks in the application layer).

Association control and presentation connection processing are
“piggybacked”: the association control APDUs for A-ASSOCIATE, A-
RELEASE, and A-U-ABORT are conveyed as user data in corresponding
presentation service primitives (P-CONNECT, P-RELEASE, and P-U-
ABORT, respectively). The sequence of primitives and application proto-

220 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Request er Accept er

Net wor k ===

A- ASSOCI ATE. r equest
. | AARQ APDU -

A- ASSCOCI ATE. i ndi cati on

A- ASSCCI ATE. r esponse

| | AARE APDU 4+

m< — 4

P

A- ASSQOCI ATE. confirm

Y

FIGURE 10.2 Association Establishment

col exchanged between a requester and an accepter during association
establishment is depicted in Figure 10.2.

A-ASSOCIATE is a confirmed service; thus, in the normal sequence of
events, the A-ASSOCIATE.request is processed by the requester, which
composes an AARQ APDU and submits it to the presentation layer (via the
P-CONNECT.request primitive). The AARQ APDU is delivered (as user
data of the P-CONNECT.indication primitive), and the information con-
veyed in the APDU is passed to the accepter via the A-ASSOCIATE.indica-
tion. The accepter may accept or reject the association (admittedly, having
an accepter “reject” something seems counterintuitive, but that's what the
standard says); this result, together with a reason code, is indicated in the
result and diagnostic parameters? of the A-ASSOCIATE.response. The result
and diagnostic, together with the identifiers of the responding application
entity, are used to compose the A-ASSOCIATE response packet (in Figure
10.2, the AARE APDU). The response packet is delivered to the requester
(via the P-CONNECT.confirm primitive). The ASN.1 definition of the
AARE APDU is shown in Figure 10.3.

2. According to the standard, the reason for rejection may be “permanent” or “tran-
sient,” but what constitutes permanent or transient is not discussed. The choice of diagnostic
codes defined in the ACSE protocol includes “application context name not supported” and
a set of codes indicating “title/invocation/ qualifier not recognized.” The OSI folks did try to
standardize the use of these and additional reason codes but failed. Transient is typically
used for no-resource conditions, and permanent is used for cases in which the named
AP/ AE doesn’t exist or requested session user requirements, for example, aren’t supported.

“CORE” APPLICATION SERVICE ELEMENTS 221

AARE-apdu :: =
{ protocol -version

[APPLI CATION 1] IMPLIA T SEQUENCE
[0] IMPLIAT BIT STRING
{ versionl (0) }
DEFAULT versi onl,

appl i cati on- cont ext - nane [1] Application-context-nare,
resul t [2] Associ ate-resul t,
resul t-source-di agnostic [3] Associ at e- sour ce- di agnosti c,

respondi ng-AP-Titl e

[4] AP-title

CPTI ONAL,

respondi ng- AE- Qual i fi er [5] AE-qual i fier
CPTI ONAL,

respondi ng- AP- 1 nvocati on-identifier [6] AP-invocation-identifier
CPTI ONAL,

respondi ng- AE- | nvocati on-identifier [7] AE-i nvocation-identifier
CPTI ONAL,

i npl ement at i on-i nformation [29] IMPLIA T I npl enent ati on-dat a
CPTI ONAL,

user-infornation [30] IMPLIA T Associ ation-information
CPTI ONAL

}

(Source: ISO/IEC 8650: 1988)

FIGURE 10.3 Abstract Syntax of AARE-apdu ASN.1 Definition of the AARE APDU

No “data packets” are defined for the association control service
element. Once an association is established, no association control proto-
col is exchanged until the association is released or aborted; only the pro-
tocol of other application service elements, including the user element, is
exchanged by the application processes.

The A-RELEASE service (Figure 10.4) is used to terminate an associ-
ation in an orderly manner; the communicating application entities typi-
cally see that all information exchanges have been completed prior to
releasing the association. This is a confirmed service. It uses the A-
RELEASE request and A-RELEASE response packets (in Figure 10.4, the
RLRQ and RLRE APDUEs, respectively), and the service primitive and
protocol action is similar to that of the A-ASSOCIATE service.

The A-U-ABORT service (Figure 10.5) is disruptive; it is invoked
when one association control user chooses to terminate an association
abruptly. No attempt is made to assure that all information exchanges
have been completed. A-P-ABORT occurs when the association control
service provider releases, either due to errors internal to the association
control service provider or when the association control provider deter-
mines that services below the application layer have failed in some man-

222

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Modes

Request er Accept er

A- RELEASE. request

A- RELEASE. i ndi cati on

>~| RLRQ APDU |-

A- RELEASE. r esponse

| RLRE APDU |</

mg — -

|

v A- RELEASE. confirm

FIGURE 10.4 Association Release

ner. Both ABORT services use the A-ABORT packet (in Figure 10.5, the
ABRT APDU) when protocol is exchanged; A-P-ABORT does not involve
protocol exchange when occurring as the result of communication failure.

ISO/IEC 8649 defines two “modes” of ACSE operation: in the normal
mode, implementations use the association control service and protocol as
defined in ISO/IEC 8649 and 8650; in the X.410-1984 mode, however,
implementations are required to pretend that the association control pro-
tocol doesn’t exist for the sake of communicating with CCITT X.410-1984
implementations. In such circumstances, implementations pass the pre-
sentation and session service requirements through to the presentation

Request er Accept er

A- ABORT. request
T

| \
M | ABRT APDU |
E

T~

Y A- ABCRT. i ndi cati on
FIGURE 10.5 Association Abort (User-initiated)

“CORE” APPLICATION SERVICE ELEMENTS 223

layer and use only the presentation kernel (see Chapter 11). No associa-
tion control protocol is exchanged; the mode of operation is conveyed
during the presentation connection establishment (see Chapter 11).

Only a handful of the parameters of the A-ASSOCIATE service are
used in the case of X.410-1984 mode (those that are not marked with “*”
in Table 10.1). The conformance statement for the association control pro-
tocol says that either or both modes must be implemented.

A Ac The X.410-1984 mode of operation is named after the 1984
version of the CCITT X.400 Message Handling System re-
commendations. The history behind the existence of two modes of ACSE opera-
tion is simple. In 1983, the CCITT was in the process of completing its recom-
mendations for message handling services; at the time, however, the disposition
of function between the application and presentation layers of the message han-
dling architecture was still a subject of great debate in the ISO OSI community.
Since leap years were historically “publish or perish” times for CCITT —the
member organizations had to agree upon recommendations during a plenary
session or wait another four years for the next plenary—it was determined that
the best interests of the CCITT community would not be served by waiting for
the OSI upper layer organization to be completed. Applying the changes
throughout the MHS architecture could be done in 1988, with only the small
issue of “backward compatibility” to consider —and how hard could that be?

Reliable Transfer Service Element

There are very few occasions when you have the luxury of reading a
book uninterrupted, or “cover to cover.” More often than not, you find
time to read several pages, perhaps a chapter or two, but inevitably, your
reading time will be interrupted, or you'll fall asleep. You might dog-ear
the last page read or use a bookmark to locate the point where you
should continue when you once again find time to read. You do so be-
cause you would certainly prefer to continue reading from the page
where you left off rather than begin again from page 1. In such situa-
tions, you and the book have formed an association, and your use of a
bookmark, for example, provides a synchronization point (or “check-
point”). Similarly, if you engage in a telephone conversation with some-
one and your call is unexpectedly disconnected, you redial and typically
continue, or recover, the conversation from the point at which you were
interrupted. Again, you and the party you call are engaged in a (voice)

224

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

application, and your ability to remember the last subject under discus-
sion serves as a synchronization point in the conversation in the event
that the underlying telephone connection fails. In both examples, large
amounts of information are exchanged between communicating entities.
And although the two forms of dialogue illustrated differ—the first is
monologue, the latter two-way alternate—there is a strong incentive in
both cases to avoid repetition.

End users of applications that exchange large amounts of data—
multimedia message handling, image transfer/retrieval, office or elec-
tronic document interchange, plain old bulk file transfer—share this
incentive; they don’t want to “start from scratch” if network connections
fail. It wastes time and resources and is potentially costly. The reliable
transfer service element (RTSE) (ISO/IEC 9066-1: 1989; ISO/IEC 9066-2:
1989) provides services that enable application entities to (1) synchronize
and later recover from (temporary) communications failures between
end systems with a minimum amount of retransmission, and (2) conduct
both monologue and two-way alternate conversations without having to
deal directly with the mechanics of providing such services.

The reliable transfer service element relieves the user from having
to worry about the details of association establishment and release. This
service does not provide low-level control of associations the way that
association control does; rather, it initiates and terminates an association
for a reliable transfer service user with the primary purpose of transfer-
ring data. The reliable transfer service effectively bundles several layers
of service features into a single service. Using the RTSE primitives, a reli-
able transfer service user can:

+ Coordinate information exchange within an association (turn man-
agement)

» Confirm that a remote reliable transfer service user has received
and secured data before sending more data (synchronization)

» Recover from the temporary loss of a presentation connection

+ Ensure that an association is closed without loss of any information
that might have been in transit when the close was requested (the
popular term for this mechanism is graceful close)

The foregoing can be accomplished with three simple service requests:
RT-OPEN, RT-TRANSEFER, and RT-CLOSE.

As an example, consider a medical-imaging service, one that en-
ables physicians to retrieve X rays or magnetic resonance images (MRIs)
from a central database across a network providing application-to-appli-
cation throughput of 1 Mbps. MRIs are very large, measurable in mega-

“CORE” APPLICATION SERVICE ELEMENTS 225

Association
Establishment

bytes of data. In a worst-case scenario—all but the last 1,000-byte frag-
ment of the image is transferred, and the network connection fails —
retransmission of a 10-megabyte (80-megabits) MRI “from scratch” could
cause nearly 80 additional seconds of delay in the transfer. Now, a physi-
cian’s time is precious, and such delays might not be tolerated. The reli-
able transfer service could be used by this medical-imaging service ele-
ment to assure that the precise image is delivered to the physician with-
out excessive retransmission. In this example, retransmission could
begin from the point of failure (the last 1,000 bytes), and the delay would
be greatly reduced.

The reliable transfer process, from request to completion of trans-
fer, is composed of the functions discussed in the following sections.

A physician makes a request for an MRI from a remote image database.
The user element of the remote image database application invokes the
RT-OPEN service, which uses the Association-Control Service Element to
form an association between the computer hosting the database and the
physician’s local computer (see Figure 10.6). Note that in this example, the
information object . appl i cati on- cont ext - nane of the AARQ APDU
would be assigned the OID value for the association context name of the
mythical MRI application “davesExcellentMRIs.” Since the origin and
location of this name information are not obvious, let’s consider the exam-
ple a bit further. Suppose “Dave’s Excellent Software” is a U.S.-based com-
pany, and suppose further that the firm decides to obtain a globally
unique identifier from the U.S. registration authority (see Chapter 5). The
organization identifier is given the alphanumeric representation of
“davesExcellent” and assigned a numeric value of “22345.” When Dave’s
Excellent Software develops the MRI application, it uses the branch of the
object identification tree i so (1) nenber-body (2) US (840)
davesExcel | ent (22345) to uniquely identify application entities,
abstract syntaxes, application context names, etc., for its applications.
Thus, depending on how the company decided to write ASN.1 definitions
for its applications, the application context name of the application
davesExcellentMRIs might look like this:

davesExcel | ent - MRl s-ac OBJECT | DENTI FI ER

:={ iso (1) menber-body (2) US (840) davesExcellent (22345)
MR's (01) applicationContext (03) }

This application context name identifies the user element and, by impli-

3. The term user element refers to the consumer of ASE services. (ISO/IEC 7498-1: 1993).

226 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

cation, the set of application service elements that the user element re-
quires* (in this case, association control service element and RTSE).

TABLE 10.2 RT-OPEN Service Parameters

Parameter Name Request Indication Response Confirm
Dialogue mode Mandatory | Mandatory(=)

Initial turn Mandatory | Mandatory(=)

Application protocol

User data

Mode

Application context name

Calling AP title

Calling AE qualifier

Calling AP invocation identifier
Calling AE invocation identifier
Called AP title

Called AE qualifier

Called AP invocation identifier
Called AE invocation identifier
Responding AP title

Responding AE qualifier
Responding AP invocation identifier
Responding AE invocation identifier
Result

Result source

Diagnostic

Calling presentation address
Called presentation address
Responding presentation address
Presentation context definition list
P-context definition result list
Default presentation context name
Default presentation context result

User option
User option

> > > > >

Conditional(=)
Conditional(=)

> > > >

User option

A

> > > >

Conditional(=)

A

> > > > > >

Note: In this table, the notation “A” is used to identify parameters that appear in the RT-OPEN primitive so that their
values can be “passed through” RTSE to corresponding ACSE primitives, and the notation “P” is used to identify para-
meters that are similarly “passed through” to the presentation service.

4. Note that the term application protocol data unit is used generically here. Depending
on how the application is written, the APDU may be an ASN.1 SEQUENCE consisting of

“CORE” APPLICATION SERVICE ELEMENTS 227

RT-TRANSFER:
Activity
Management,
Checkpointing,
and
Synchronization

The abstract syntaxes that the presentation layer would have to
manage would include ACSE, RTSE, and the APDUs defined for the
MRI transfer. Thus, the abstract syntax component of the presentation con-
text definition list parameter of the A-ASSOCIATE.request would contain
the following object identifier value:

davesExcel | ent MR s-as CBJECT | DENTI FI ER
::={ iso (1) menber-body (2) US (890) davesExcel | ent
(22345) MRI's (01) abstract syntax (02) }

It would also contain the object identifier values for the ACSE and RTSE
abstract syntaxes.

The protocol necessary to establish an association via the reliable
transfer service—the RT-OPEN request and accept packets (in Figure
10.6, the RTORQ and RTOAC APDUS, respectively)—is conveyed as user
data in the A-ASSOCIATE service primitives and “piggybacked” onto
the AARQ and AARE APDUs. In effect, the reliable transfer protocol
“header” merely adds to the list of parameters negotiated during associa-
tion control; it does not create an additional association. The state
machine of the RTSE protocol is wedded to that of the association control
protocol during association setup and release. The additional parameters
include checkpoint size, the number of kilobytes of data that may be sent
between synchronization points, and window size, an upper bound on the
amount of data that can be sent. Checkpoint size is an indication of how
frequently you want to insert synchronization points in the data stream;
window size indicates how many units of checkpoint size you’'ll send
before you will wait to hear that the receiver has secured the data you
have transmitted—in effect, how far you are willing to press your luck.

Once an association is established, the image is transferred using
the RT-TRANSFER service.

A reliable transfer service user can submit arbitrarily large amounts of
data—as a single, encoded user element APDU value—in a single RT-
TRANSFER .request. In our medical image transfer example, an entire
image of perhaps several megabytes of data might constitute a single
user element APDU. The RT-TRANSFER service accepts such arbitrarily
large quantities of user data and treats each submission as a separate
transfer activity. Within the context of this transfer activity, a sending

an operator (e.g.,, FETCH-IMAGE), followed by the arguments patient name (OCTET-
STRING) and patient number (INTEGER). An associated medical image (GRAPHICS
STRING or BITSTRING) might be retrieved by using the patient information to identify
which image “instance” is requested.

228 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Request er Responder

- /@

Net wor k

[I
RT- OPEN.
@ r equest
RT OPEN.
i ndi cati on

A A ASSCC ATE.
@ r equest i ndi cati on
AARQ | RTORQ @
N [Frowe)
-
|
M 4 RT- OPEN.) (Q:EN
E confirm r esponse
A- ASSQO ATE.
. A- ASSCC ATE.
confirm
response
[T 141D
| AN y N

FIGURE 10.6 Reliable Transfer Open

RTSE fragments the medical image into octet strings of length {check-
point size X 1,024} and then invokes the following presentation services
(see Chapter 11):

e P-ACTIVITY-START.request to signal the beginning of a user ele-
ment APDU (an activity) to the receiver

+ P-DATA.request to transmit the first fragment as a RELIABLE
TRANSFER APDU (in Figure 10.7, the initial RTTR APDU)

The sending RTSE then alternately sends:

+ A P-MINOR-SYNCHRONIZE.request to insert a checkpoint into
the information stream

“CORE” APPLICATION SERVICE ELEMENTS 229

+ A P-DATA.request to transmit the next (final) fragment as a RE-
LIABLE TRANSFER APDU (in Figure 10.7, the subsequent RTTR
APDUs)

until all the user data (the entire medical image) have been transferred.
Finally, the sending RTSE uses the P-ACTIVITY-END.request primitive
to mark the end of the activity when the last fragment of the medical
image has been sent.

On the receive side, the RTTR APDUs arrive as user data trans-
ferred across a presentation connection. The receiving reliable transfer
service element secures data extracted from each RTTR PDU received
and confirms this by responding to the P-MINOR-SYNCHRONIZE.indi-
cations. The receiving RTSE user (the user element of the physician’s
medical-imaging application process) is informed when transfer of the

Renot e dat abast Physi ci an' sof fi

User el enent APDU
User el enent APDU

RT- TRANSFER r equest RT- TRANSFER i ndi cat i on

Rel i abl eTr ansf er Servi ce /

Gcti vity Check- Check- Check- Acti vm
end poi nt poi nt poi nt start

SR R A A—
ENEHY -VNira

- J

FIGURE 10.7 Reliable Transfer

230

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Turn (Token)
Management

Reliability
Mechanisms:
Exception
Reporting/Transfer
Retry, Association
Recovery/Transfer
Resumption

RT-CLOSE: Asso-
ciation Release

entire image is complete (the end of this transfer activity) via the RT-
TRANSFER.indication primitive. If the transfer activity is completed
within a transfer time indicated by the sender (a “catastrophic failure”
time-out value), the sending RTSE user (the remote image database
application) is informed that the user data have been secured by the
receiving RTSE via the RT-TRANSFER.confirmation primitive. If the
transfer is not completed within the specified transfer time, the sending
RTSE gives up, invokes the presentation activity discard service (see
Chapter 11) to clean up the mess, and aborts the association.

The medical image transfer example considers only the case in which
reliable transfer is a one-way operation (from remote database to physi-
cian). Other applications might want to organize information exchange
into dialogues (two-way alternate). In such communications, elements
familiar to telephone conversations—politely waiting one’s turn to speak,
asking for a turn to speak, interrupting, resuming after an interruption—
are implemented using RT-TRANSFER services in conjunction with RT-
TURN-PLEASE and RT-TURN-GIVE services; these services make use of
the turn-management presentation (and session) services discussed in
Chapter 11.

The reliable transfer service attempts to mask several types of error con-
ditions from reliable transfer service users during a transfer activity. For
example, the reliable transfer service performs recovery of a single activi-
ty without user intervention: if a receiving RTSE encounters an error that
is procedural or local to the receiving RTSE and is recoverable, it will dis-
card the present activity and retry the transfer using exception and activi-
ty-management presentation services. The reliable transfer service also
recovers from the temporary loss of an association between two reliable
transfer service users by resurrecting the association (here’s where invo-
cation identifiers are handy) and resuming an activity interrupted by the
communications failure from the last checkpoint. Of course, when the
error detected by a receiving RTSE is “severe,” or when an association
cannot be resurrected within a user-specified recovery time, the service
will be aborted. The RT-ABORT service is also available to allow abrupt
termination of an association between two reliable transfer service users
(in Figure 10.8, the ABORT packet for reliable transfer, the RTAB APDU,
is piggybacked onto the association control ABORT APDU, ABRT).

The RT-CLOSE service provides a “graceful” termination of an associa-
tion. Any outstanding RT-TRANSFER.request must be confirmed (in

“CORE” APPLICATION SERVICE ELEMENTS 231

Request er Responder
(03
Net wor k
7 I
RT- ABORT. ¢ A
r equest
RT- ABORT.
AE i ndi cation
-
I
M
E A- ABORT. A- ABORT.
i ndi cation
[err [rRTae H @
- J J

FIGURE 10.8 RT-ABORT (User-initiated)

both directions) before the association can be closed; i.e., any activities in
the process of being transferred must be completed. Figure 10.9 illus-
trates how the RT-CLOSE service maps onto the A-RELEASE service.
Note that no explicit RTSE protocol is used in the close process (recall
that the RLRQ APDU is part of the association control protocol); user
data from the user element are passed as user data in the A-RELEASE
primitives and protocol. Although this might appear to be a curious
departure from the user-initiated RT-ABORT, in which an explicit RTAB
APDU may be used, it’s really OK; the RTAB APDU allows user ele-
ments to convey an APDU that might provide a more detailed explana-
tion of the reason for abort than the Abort-reason “user-error” specified
in ISO/IEC 9066-2.

A H A One might expect that OS file transfer, access, and manage-

ment would make excellent use of the reliable transfer service.

Unfortunately, FTAM was developed before the reliable transfer service, and

FTAM manages presentation services directly. There are some who consider this

“a good thing,” since FTAM makes extensive use of presentation services
beyond those used by the RTSE.

232

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Request er Responder
03]
Net wor k
(RT- CLCBE.\
r equest
A- RELEASE. A- RELEASE.
i ndi cati on
——| RLRQ @
L D [RRQ_|)
-
I
M 4 RT- CLOSE.) @ RT- CL(ISE.\
E confirm response
G = ()
A- RELEASE. A- RELEASE.
confirm
response
(= B G
LN J - J

FIGURE 10.9 Reliable Transfer Close

Remote Operations Service Element

As the name implies, the remote operations service element (ROSE)
allows an application process on one computer to invoke an application
process on a different (remote) computer to perform some set of opera-
tions. The concept is a powerful one and is used in applications where
client/server, manager/subordinate (agent), or multipeer, shared pro-
cessing relationships are necessary.

Remote operations, often called remote procedure calls, appear in
many distributed-processing applications today. The Network File Sys-
tem (NFS; Sandberg 1988) applies a client/server remote operation para-
digm in providing a networked or distributed UNIX file system. Client

“CORE” APPLICATION SERVICE ELEMENTS 233

workstations (often diskless) invoke the services of a “disk-full” computer,
called a file server, to read information from, and write information to,
long-term storage. Network management applications based on OSI
common management use remote operations to invoke the services of
subordinate or agent applications that run on manageable network re-
sources to isolate and correct faults, configure those resources, and col-
lect management information through some set of management opera-
tions. And both the OSI Message Handling System and the OSI Directory
(see Chapters 7 and 8) make extensive use of remote operations in the
somewhat similar user agent/transfer agent relationships.

Some distributed operating system applications—e.g., DUNE (Al-
beri and Pucci 1987), LOCUS (Walker et al. 1983)—apply the client/
server paradigm to a group of networked computers, whereas other dis-
tributed operating systems behave as if they were a single “monster”
multiprocessor, multitasking (super)computer, with each computer pos-
sessing the ability to pass off a task or procedure to another, less busy
computer and each having “equal access” to the others” resources (CPU,
disk, etc.).

Just as the reliable transfer service element simplifies the process of
reliable data transfer between computer systems, the remote operations
service element simplifies the process of distributing operations across
multiple computer systems. Like RTSE, ROSE relieves user elements
from having to worry about the details of association establishment and
release (it either invokes association control itself or allows the reliable
transfer service element to do so) and bundles several layers of service
features into a single service. Within the context of an association, ROSE
allows an application process on a local computer to invoke an applica-
tion process on a remote computer and request that it perform an opera-
tion. The operations themselves are treated as ASE services and are
defined as abstract syntaxes in standard application service elements like
the MHS and Directory ASEs or in user-programmed application service
elements. (Remote operations in OSI thus operate on abstract rather than
concrete data types.) OSI collectively labels the set of ASE services avail-
able to a user element of an application entity an operations interface
(Figure 10.10).

In the figure, each “user ASE” represents some remote operation(s)
the user element may invoke. The user element may use the ACSE
directly to establish associations between itself and other user elements.
The user element may optionally use the reliable transfer service element
to handle association control and reliable transfer if information transfer
between user elements would benefit from this additional facility.

234

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Synchronous and

Asynchronous
Operations

In some distributed applications, the invoking user element may wish to
wait for the operation to be completed (remote operations performed in
this “lockstep” fashion are classified as synchronous operations), or the
user element may invoke a remote operation and continue processing
while the operation is performed (asynchronous operation). In both cases,
the performer can be directed to return indications of whether or not the
requested operation was successful (a result and/or an error). The matrix
of synchronous/asynchronous modes and reply possibilities is illustrated
in Table 10.3; each combination is known as an operation class.

TABLE 10.3 ROSE: Operation Classes
Operation Class | Synchronous | Asynchronous Report Result | Report Error
1 g 0 0
2 d g 0
3 d]
4 d g
5 0

Linked Operations In some distributed applications, the performer of a
remote operation may find it necessary to invoke a related operation
from the user element that originated the remote operations relationship
(the “parent” of the remote operation). Remote operations linked to the
parent remote operations are called “child” operations. Figure 10.11 illus-
trates this concept.

Application en
é User el enen N
| User ASE
| User ASE Aset of
User ASE] renote
oper ati ons
avai | abl e
totheuser
el enent
-
FIGURE 10.10 Operations Interface

“CORE” APPLICATION SERVICE ELEMENTS 235

Dry the P
di shes. M
’éztjo,7
e
YL o
i M X “
Here' sthe =0 fa |
t owel . L nk@do o
0

L
e c‘(\"\& Hand e a di sh, pl eas
]

| Hand ne t he
di shtowel .

‘\/
el
Here' s a oP @ |
di sh. e, e
ke o
4 O”(GJPS! | brokeit!]

-

FIGURE 10.11 Linked Operations

Distributed applications correlate linked operations using the
invoke ID. A concrete example: remote operations invoke IDs are used to
correlate OSI common management information service requests and
responses—in other words, management applications assign unique
numbers to their requests and use these numbers to decipher later
responses from managed systems. For example, when a management
application issues an M-GET.request with invoke ID “42,” the manager
sends an ROIV-M-GET request packet. The agent on the managed sys-
tem responds with an RORS-M-GET response PDU, also containing the
invoke ID “42” (these common management information services call the
RO-INVOKE and RO-RESULT ROSE services, which are described later
in this chapter). If multiple replies are needed, the agent responds with
several ROIV linked-reply packets (each containing the linked ID “42”),
concluded by the final RORS-M-GET response packet.

236

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Relationship of
ROSE to Other
“Core”
Application
Service Elements

ROSE Services
and Protocol

ROSE may use ACSE directly to establish associations. In such configura-
tions, the ROSE user invokes association control to establish and release
associations, as illustrated in Figures 10.2 and 10.4, respectively, and uses
the presentation layer to transfer data. ROSE users may wish to take
advantage of the services of RTSE; in this case, the ROSE user establishes
and releases associations by invoking the services of RTSE (RT-OPEN and
RT-CLOSE, illustrated in Figures 10.6 and 10.9, respectively) and uses the
RT-TRANSEFER service (Figure 10.7) to transfer data (see Figure 10.12).

The ROSE services provide the basic elements for interactive (inquiry/
response) communications:

» RO-INVOKE allows an AE to request that another AE perform an

RT- OPEN. request ~ RT- CLCSE. r equest

A- ASSCOCI ATE. r equest A- RELEASE. r equest
(a) Associ ati on (b) Associ ati on
est abl i shnent rel ease

RT- TRANSFER. r equest

P- DATA request hﬁ

Appl i cati orl ayel
Present ati onl ay«

Present ati onservi ceprovi der

(C Datatransfer
FIGURE 10.12 ROSE Use of “Core” Application Service Elements

“CORE” APPLICATION SERVICE ELEMENTS

237

operation; the requesting AE is called the invoker, and the AE

responsible for the grunt work is called the performer.

* RO-RESULT and RO-ERROR allow performers to indicate whether
the operation succeeded or failed.
* RO-REJECT-U and RO-REJECT-P are exception services initiated
by the performing AE or ROSE, respectively.

All ROSE services are described in the standards as “unconfirmed”
(except RO-REJECT-P, which is provider-initiated). (Table 10.4 illustrates
the primitives and parameters of the ROSE.) A more accurate description
is that RO-RESULT, RO-ERROR, and RO-REJECT are “confirmations”
for operations that are RO-INVOKEd. A typical sequence of ROSE
events, for example, is “Send an RO-INVOKE and get back an RO-
RESULT or RO-ERROR.” RO-RESULT means complete and successful,
whereas RO-ERROR means something went wrong—either partial or
total failure occurred (for example, the operation may have been per-
formed with a diagnostic returned).

TABLE 10.4 ROSE Primitives

RO SERVICE Parameter Value Request Indication

RO-INVOKE Operation value Mandatory Mandatory(=)
Operation class User option
Argument User option Conditional(=)
Invoke ID Mandatory Mandatory(=)
Linked ID User option Conditional(=)
Priority User option

RO-RESULT Operation value User option Conditional(=)
Result User option Conditional(=)
Invoke ID Mandatory Mandatory(=)
Priority User option

RO-ERROR Error value Mandatory Mandatory(=)
Error parameter User option Conditional(=)
Invoke ID Mandatory Mandatory(=)
Priority User option

RO-REJECT-U Reject reason Mandatory Mandatory(=)
Invoke ID Mandatory Mandatory(=)
Priority User option

RO-REJECT-P Invoke ID ROSE provider option
Returned parameters ROSE provider option

Reject reason

ROSE provider option

238

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

RO-Notation

The ROSE user APDUs are the basis for the actual work to be done.
The ROSE protocol is merely a “wrapper,” present primarily to convey
parameters of the service. Specifically, the remote operations invoke
packet (ROIV APDU) is used to convey the invocation identifier, linked
invocation identifier, and operation value from the RO-INVOKE.request.
The ASN.1 data type identified in the ARGUMENT clause of the remote
operation may be included in the ROIV APDU as well. Other parameters
(the operation class and the relative priority of this operation with respect
to other invoked operations) are not carried in protocol but affect han-
dling by the local ROSE provider.

The remote operations result (RORS) and remote operations error
(ROER) packets convey the invocation identifier as a means of correlat-
ing the ASN.1 data type identified in the RESULT and ERROR clauses of
an OPERATION to a given invocation of that remote operation.

The remote operations reject (ROR]) packet again conveys the invo-
cation identifier as a means of correlating a user or provider rejection of
an operation. A reason for rejecting the operation is encoded as an ASN.1
data type called problem (for which ISO/IEC 9072-2 provides a list of
standard values).

ROSE provides a set of ASN.1-defined macros—BIND, OPERATION,
UNBIND—to facilitate association establishment, RO invocation, and
association release. Two additional macros—APPLICATION-CONTEXT
and APPLICATION-SERVICE-ELEMENT—assist programmers in defin-
ing the application context for a distributed application and in defining
ROSE user elements, respectively.

Let’s assume that the object identifier for the whimsical user ele-
ment “dish drying” from Figure 10.11 is as follows:

di shDryi ngServi ce GBJECT | DENTI FI ER
::={ iso bogus (999) exanple (999) dishDrying (99) }

The APPLICATION-CONTEXT macro might then look like this:

di shDryi ngCont ext APPLI CATI ON- CONTEXT

APPLI CATI ON SERVI CE ELEMENTS { aCSE }

Bl ND di shDryer Ensl ave

UNBI ND di shDryer Fr eeToQr ui se

REMOTE CPERATI ONS { rCeE }

I N TI ATCR CONSUMER COF { di shDryi ngASE }

ABSTRACT SYNTAXES { aCSE- abstract - synt ax,
dryTheDi shes- abst ract -
syntax }

::={ iso bogus (999) exanple (999) dishDrying (99)
application-context (2) }

“CORE” APPLICATION SERVICE ELEMENTS 239

-- the ODvalue for the abstract syntax --
dryTheDi shes- abstract - syntax CBJECT | DENTI FI ER
::={ iso bogus (999) exanple (999) dishDryer (99)
abstract-syntax (1) }

In this example, the application context identifies association control,
the BIND and UNBIND macros, the ROSE (as the remote operations
provider), and the ROSE user application service element “dish-Drying
ASE” (the definitions of the actual remote operations to be performed by
the initiator and responder). In this example, the INITTATOR CONSUMER
OF clause indicates that the ROSE user that establishes the association may
invoke “dishDryingASE”. The clauses RESPONDER CONSUMER OF and
OPERATIONS OF (not used in this example) could be used to indicate
ROSE user application service elements that only the responder, or both the
initiator and the responder (respectively) may invoke.

The object identifier value for the application context is passed as a
parameter in association establishment (as the application context name
parameter of the A-ASSOCIATE.request primitive). Similarly, the abstract
syntaxes of all the application service elements—representing the set of
APDUs required for this application—are passed as a parameter in associ-
ation establishment (the OIDs of aCSE- abstract -synt ax and
dryTheDi shes- abstract - synt ax are enumerated in the presentation
context definition list parameter of the A-ASSOCIATE.request primitive).

The “dishDryingASE” is defined using the APPLICATION-SER-
VICE-ELEMENT macro:

di shDryi ngASE APPLI CATI ON- SERVI CE- ELEVENT
CONSUMER | NVCKES { dryTheD sh }
;.= { iso bogus (999) exanple (999) dishDrying (99)
appl i cati on-service-el enent (3) }

Here, the clause CONSUMER INVOKES identifies the parent
remote operation “dryTheDish”; this is the only remote operation that
Mom can ask the SUPPLIER (son Billy) to perform. If there were parent
operations that son Billy could invoke, they would be identified using
the SUPPLIER INVOKES clause, and if there were parent operations that
both the CONSUMER and the SUPPLIER could invoke, they would be
specified using the OPERATIONS clause.

The BIND and UNBIND macros for this example might look like this:

di shDryer Ensl ave
Bl ND
ARGUMENT :: = bi ndAr gunent
RESULT ::= bindResul t
BI ND- ERRCR :: = bindError

240

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Linked
Operations

di shDryer FreeToOr ui se
UNBI ND
ARGUVENT : : = unbi ndAr gunent
RESULT :: = unbi ndResul t
UNBI ND- ERRCR : : = unbi ndError

In this example, both the BIND and UNBIND macros are defined as
synchronous operations: Mom asks son Billy to dry the dishes, expecting
compliance or an argument, and also expecting an indication that the
task is completed before she will allow Billy to “cruise.” There are, of
course, error situations (the actual definition of the parameters for these
remote operation macros is left to the readers’ imagination).

The BIND macro hides the details of establishing an association
from the ROSE user, irrespective of whether the association control ser-
vice element is used directly (Figure 10.2) or the association is established
via the reliable transfer service (Figure 10.6). All the information neces-
sary to establish an association is identified in the APPLICATION-CON-
TEXT and APPLICATION-SERVICE-ELEMENT macros noted earlier.
The UNBIND macro is used to release the association (once the dishes
are dried).

One expects to find several linked operations associated with the parent
operation “dryTheDishes” identified in the CONSUMER INVOKES
statement of the application service element definition:

dryTheDi shes ::= CPERATI ON
Bl ND
ARGUMENT :: =
RESULT :: =
ERRCR :: =
LINKED ::= { askFor Towel, askForD sh, howvanyLeft }
=0

askFor Towel AskFor Towel
askFor D sh AskFor D sh
howvanyLeft HowManyLef t

1
2
3

The linked operations identify work that the CONSUMER (Mom)
may be called upon to do by the SUPPLIER (Billy). Note that each parent
OPERATION may have local or globally unique values; i.e., the data type
of operations may be INTEGER (as illustrated) or OBJECT IDENTIFIER.
The linked operations are identified within the context of the parent
operation.

The ASN.1 specification of each OPERATION formally defines the
work a performer must attempt to complete, in a machine-independent

“CORE” APPLICATION SERVICE ELEMENTS 241

fashion. There are two ways that ROSE might be used to invoke these
operations:

+ The consumer can pass the identification of a remote operation
(and associated results/errors) to a supplier, which effectively
points the supplier to a concrete set of procedures to execute. The
input to these concrete procedures and anticipated replies
(results/errors) accompany this identification (the ARGUMENT,
RESULT, and ERROR clauses).

+ The consumer can pass the identification of a remote operation and
accompany this with an ASN.1-encoded copy of the machine-spe-
cific software that is to be executed. For example, one computer in
a UNIX-based distributed operating system might use ROSE to
schlepp a user C program fragment off to a less busy peer as the
ARGUMENT data type in the OPERATION.

Putting It All Relating all the pieces in a normal sequence of events:

Together

1. A user element invokes a remote operation via the BIND macro.

2. If reliable transfer service is identified in the APPLICATION-CON-
TEXT macro, ROSE establishes an association between an initiator
and a responder using the RT-OPEN service. If reliable transfer ser-
vice is not identified in the APPLICATION-CONTEXT macro,
ROSE establishes the association using the A-ASSOCIATE service.
(Note that a BIND could be disrupted by any underlying ABORT
service.)

3. If the BIND is successful, the initiating or responding user element
may invoke remote operations as described in the {CONSUMER
INVOKES, SUPPLIER INVOKES, OPERATIONS]} clauses of the
APPLICATION-SERVICE-ELEMENT macro using the OPERA-
TION macro. ROSE processes the OPERATION macro using the
RO-INVOKE, RO-RESULT, and RO-ERROR services. If RTSE is
used, the RO-INVOKE service is mapped onto the RT-TRANSFER
service; otherwise, the ROSE makes direct use of presentation data
transfer.

4. The invocation of any of these parent operations may result in the
invocation of linked operations. Child operations may appear as
multiple replies, resulting in a sequence, for example, that begins
with sending an RO-INVOKE, continues with the receipt of several
RO-INVOKEs, and is concluded by one final RO-RESULT or RO-
ERROR.

5. An OPERATION may be disrupted via the RO-REJECT service if

242

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

ROSE or a ROSE user cannot process the OPERATION. (An OPER-
ATION could also be disrupted by any underlying ABORT service.)

6. When the user elements have exhausted their use of ROSE, the
UNBIND macro is used to release the association. If the reliable
transfer service is used, ROSE invokes the RT-CLOSE service; other-
wise, ROSE invokes the A-RELEASE service. (Again, association
release can be disrupted by any underlying ABORT service.)

ROSE is arguably the most powerful and frequently used applica-
tion service element (ACSE is frequently used but not nearly as power-
ful). The whimsical dish-drying example illustrates how one goes about
constructing remote operations. Figure 10.13 presents the ASN.1 defini-
tion of the directory system protocol, which was ROSE as an example.

Di rectorySystenProtocol {joint-iso-ccitt ds(5) modul es(1) dsp(12)}
DEFINITIONS :: =
BEG N

EXPORTS
di rectorySyst emAC, chai nedReadASE, chai nedSear chASE,
chai nedModi f yASE;

| MPORTS
di stributedOperations, directoryAbstractService
FROM Usef ul Definitions {joint-iso-ccitt ds(5) nodul es(1)
usef ul Definitions(0)}
APPL| CATON- SERVI CE- ELEMENT, APPLI CATI ON- CONTEXT, aCSE
FROM Renpt e- Oper ati ons- Not at i on- ext ensi on {j oi nt -
iso-ccitt
renote Operations(4) notation-extension(2)}
i d-ac-directorySystemAC, id-ase-chai nedReadASE,
i d- ase- chai nedSear chASE,
i d- ase- chai nedModi f yASE, i d-as-directorySystemAS, id-as-acse;
FROM Pr ot ocol Obj ectldentifiers {joint-iso-ccitt ds(5)
nodul es(1)
protocol oj ectldentifier(4)}
Abandoned, AbandonFailed, AttributeError,
NameError, SecurityError, ServiceError, UpdateError
FROM Di rect or yAbstract Servi ce directoryAbstract Service

DSABi nd, DSAUnbi nd,

Chai nedRead, Chai nedConpare, Chai nedAbandon,

Chai nedLi st, Chai nedSear ch,

Chai nedAddEntry, Chai nedRenoveEntry, Chai nedModi fyEntry,
Chai nedMbdi f yRDN,

DSARef err al

FROM Di st ri but edOperations di stri butedQperati ons;

di rect orySyst emAC
APPL|I CATON- CONTEXT
APPLI CATI ON SERVI CE ELEMENTS {aCSE}
Bl ND DSABI nd
UNBI ND DSAUNnbi nd

“CORE” APPLICATION SERVICE ELEMENTS 243

REMOTE OPERATI ONS {r OSE}
OPERATI ONS OF {
chai nedReadASE, chai nedSear chASE,
chai nedMbdi f yASE}
ABSTRACT SYNTAXES {
i d-as-acse, id-as-directorySystemAS}
;. ={id-ac-directorySystemAC}

chai ned ReadASE
APPL| CATI ON- SERVI CE- ELEMENT
OPERATI ONS { chai nedRead, chai nedConpare, chai nedAbandon}
: = id-ase-chai nedReadASE

chai nedSear chASE
APPL| CATI ON- SERVI CE- ELEMENT
OPERATI ONS { chai nedLi st, chai nedSear ch}
;= id-ase-chai nedSear chASE

chai nedModi f yASE
APPLI CATI ON- SERVI CE- ELEMENT
OPERATI ONS { chai nedAddEntry, chai nedRenoveEntry,
chai nedMbdi f yEntry, chai nedMbodi f yRDN}
;= id-ase-chai nedModi f yASE

chai nedRead Chai nedRead o=l

chai nedConpar e Chai nedConpar e c=2

chai nedAbandon Chai nedAbandon 11 =3

chai nedLi st Chai nedLi st =4

chai nedSear ch Chai nedSear ch 11 =5

chai nedAddEnt ry Chai nedAddEnt ry
11 =6

chai nedRenoveEntry Chai nedRenoveEntry D=7

chai nedModi f yEntry Chai nedModi f yEntry 11 =8

chai nedModi f yRDN Chai nedModi f yRDN
10 =9

attributeError Attribute Error =1

nanmekrr or NareEr r or =2

servi ceError Servi ceError 11 =3

dsaRef erral DSARef err al 11 =9

abandoned Abandoned ::=5
securityError SecurityError 11 =6

abandonFai | ed AbandonFai | ed =7

updat eErr or Updat eErr or 11 =8

END

(Source: ISO/IEC 9594-5: 1990, “Protocol Specifications.”)
FIGURE 10.13 ASN.1 Definition of the Directory Service Protocol

“CORE ASE Wanna-bes”

The application tool kit is growing. A number of application service ele-
ments recently completed by ISO and CCITT offer capabilities that
appear promising enough to speculate that they may ultimately become

244

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

members of the “core.” Although it is beyond the scope of this book to
address every application service element, there is a growing number of
application service elements that one might classify as “core ASE wanna-
bes.” In the area of transaction processing, for example, there are three
candidates. The OSI commitment, concurrency, and recovery (ISO/IEC 9804:
1990; ISO/IEC 9805: 1990), distributed transaction processing (ISO/IEC DIS
10026: 1992), and remote database access (ISO/IEC DIS 9579: 1992) services
provide ways to associate a sequence of operations (a transaction or an
atomic action) performed on remotely accessed data, such that either the
entire sequence of operations must be performed on the data or the
effects of all the operations must be undone. This “all or none” character-
istic is referred to as atomicity. Assuring that the effects of the operations
leave the data in either the original or the revised state (but no other) is
called consistency. Another characteristic of processing a transaction is
data isolation: from the time a transaction is initiated until it is completed,
all data involved in the transaction may not be accessed by any other
transaction.

A final characteristic of transaction processing is that once the data
are changed, the changes endure failures of any subsequent transaction
performed on the data. For example, if a transaction “foo” succeeds and
results in a counter’s value being changed from 1 to 2, the subsequent
failure of a transaction “bar” cannot “undo” the effect of “foo” by leaving
the counter with a value other than 2.

Commitment concurrency and recovery, transaction processing,
and remote database access service elements are enabling vehicles for
distributed-processing applications such as electronic banking (automat-
ed teller machines), point-of-sale inventory control, purchasing using
debit cards, electronic brokering, and remote database access.

Early in the development of the OSI application layer, the terms
common application service elements (CASE) and specific application service
elements (SASE) were abandoned because no consensus could be reached
on what criteria should be used to distinguish what was common from
what was specific. This problem exists only if you persist in believing
that the classification of an application service element is something stat-
ic rather than dynamic. The true measure of whether an application ser-
vice element is among the “core” set of application tools is how exten-
sively it is used. Although the OSI Message Handling System and the
Directory may be considered specific end-user applications today, in the
future—as standards for office document management, banking, elec-
tronic data interchange, document filing and retrieval, and electronic
library applications emerge—these, too, may become “core ASEs.”

“CORE” APPLICATION SERVICE ELEMENTS 245

Conclusion

This chapter concludes the discussion of the application layer. It has
examined the most frequently used application service elements—ACSE,
RTSE, and ROSE—and illustrated how these ASEs provide services, indi-
vidually and collectively, to the application service elements described in
Chapters 7, 8, and 9. In the process, the authors have attempted to
demonstrate the modularity of the OSI application layer and the flexibili-
ty afforded a user element (a specific application service) when a set of
general-purpose mechanisms are made available to a developer of dis-
tributed application services.

THE PRESENTATION AND
SESSION LAYERS

The presentation and session layers collaborate to provide many of the
distributed-processing capabilities presented to user elements by the ser-
vice elements of the application layer; for this reason, they are discussed
together.

Presentation Layer

Context Set
Definition

Chapter 4 describes how ASN.1 provides the application programmer
with a tool for creating data structures that are syntactically independent
from the way in which data are stored in a computer and from the way
in which they are transferred between computer systems. Transforming
these abstract syntaxes into “concrete” data structures appropriate for a
given operating system (e.g., UNIX, DOS, VMS, MVS) is typically han-
dled by tools such as ASN.1 compilers. The task of preserving the seman-
tics of the data exchanged between a sender and receiver across an OSI
network is handled by the presentation layer, which performs the trans-
formations from the local (concrete) syntax used by each application entity
to a common transfer syntax. This leads us to the discussion of the notion
of a presentation context set.

The presentation layer is responsible for managing the transfer syntaxes
associated with the set of abstract syntaxes that will be used by applica-
tion entities as they exchange information across a presentation connec-
tion. As part of presentation connection establishment, application enti-
ties must be sure that the presentation layer can support a transfer syntax

247

248

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Presentation
Service

for every abstract syntax required by the distributed-processing applica-
tion(s) that will use this connection. A presentation context definition list,
consisting of a presentation context identifier and an abstract syntax
name, is created by the application entity that initiates the presentation
connection establishment. The responding application entity determines
whether the list is complete and whether it can be supported, on a “per-
entry” basis. The set of presentation contexts resulting from this negotia-
tion is called the defined context set (DCS).!

The presentation service (ISO/IEC 8882: 1988) is presented in terms of
the facilities it provides. The connection establishment (P-CONNECT) and
connection termination facilities (P-RELEASE, P-U-ABORT, P-P-ABORT)
provide presentation connection management between communicating
application entities. Within the context established for a presentation
connection, and through the use of the context management facility (P-
ALTER-CONTEXT), the presentation layer preserves the semantics of
data as they are transferred between applications.

In OSI, certain functions reflected by application service elements
are performed in the session layer—e.g., token management, synchro-
nization, and checkpointing. When these session layer services are
invoked, and because the rigid layering prescribed by the OSI reference
model does not allow one to “skip layers,” the presentation layer is seem-
ingly “in the way.” The presentation layer does not provide the service
directly but instead passes these service primitives between the applica-
tion and session layers; thus, the so-called pass-throughs were born. For
applications that require direct manipulation of session services, the pre-
sentation layer offers applications “pass-through” facilities to services
offered by the session layer. Collectively identified under the rubric dia-
logue control, they consist of 21 services that directly reflect session layer
token management, activity management, data synchronization, and
exception reporting services.

(The complete set of primitives and parameters of the presentation
service is illustrated in Table 11.1.)

Note that although the presentation layer service primitives suggest
that the presentation layer has some active role in providing activity and
token management, synchronization, and exception services, this is not

1. A default context is always known by the presentation service provider and the ser-
vice users. The need for a default context arises (once again) from the need to support the
X.410-1984 mode of the OSI Message Handling System; when no presentation protocol is
exchanged, the default context is assumed. The default context name may also be passed as a
parameter during presentation connection establishment.

249

THE PRESENTATION AND SESSION LAYERS

=N W ejep I9sn) V1IvVd-dd.LlidaddXd-d
=N N ejep 19s) V1va-dddAl-d
=N N ejep 19s() VLIVa-d
=)D n =2 n ejep 19s)
=D n JSI[3[NS3I UOTII[3P IXAJU0D-J
=D n D 3SI] 3[NSAI UOHIPPE JXSJUO0D-J
=D n ISI[UOT}3[aP IXIU0D-J
=)D n ISI] UORIPPE XU~ IXJINOD-JALTIV-d
W UoseaI I9PIAOIL] LI049dV-d-d
(=)D n ejep 19s() 1I049v-N-d
y3noxny; sseJ y3nony; sseJ Jnsay
=D n (=)D n ejep 19 ASVATIN-d
=N W NS
(=)D n (=D n ejep 1asM)
y3noryy sseg y3noryy sseg y3noryy sseg y3noIyy sseJ| IaPTuUapI UOHIIULOD UOTISSIG
y3noxy; sseJ y3noxy; sseJ y3noxy; sseJ y3noxy; sseJ JuawudIsse U9y 0} [enIuf
y3noxy; sseg y3noxny; sseg y3nony; sseg y3noxny; sseJ I9quINU [eLISS [erIu]
ySnoxy sse ySnoxy sse ySnoxyy sseg ySnoxyy sseg syuswaImbair uorssag
=N N 9PON
=D n D nl| syuowoermbai uoneyussar]
y3noayy sseg y3noays sseg y3nory; sseg y3noryy sseg 9D1AISS JO ATeng)
=D D J[NSAI JX2JU0D JNeJa
=)D n SUWIRU }X3JU0D }[neja(
(=)D D D AST] JNSSI UOHIULIP IXdIU0D-]
=D n 3SI] UORIULDP }XR}U0D-J
W W ssarppe-J Surpuodsay
wW | ssaxppe uoneuasaid pafred
W JN| ssaxppe uonejuasard Sure) IDANNOD-d
warfuo) asuodsayy UoOLYIIPUT 1sanbay QUIDN AJoUDIV] 201311ULALJ UOLDIUISIA

SOAT}IWILL] 9OTAISG UOTIRIUSSAL]

T'IT H19dV.L

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

250

y3nomy sseg uosedy | LIOJTI-NOILIIDXT-d-d
=D n ejep 19s]
ySnomnyp sseg | ySnomyp sseq uoseay | LJOJTI-NOLLIAOXT-N-d
ySnonp sseg | ySnonp sseq uoseay AAVISIA-ALIAILDV-d
ySnorpysseg | y3noays sseg uoseay | LIMMYALNI-ALIALLOV-d
=D n (=)D n ejep 19s0)
y3noxy; sseq ySnomy sse | Iaquunu [ewas jurod yousg ANT-ALIALLDV-d
=D n ejep 19sn)
y3noryj sseg y3dnoryj sseJ | (] UOTDIUUOD UOTSSIS P[0
y3noryy sseJ ydnoryy sseJ | Ioquunu ferras jurod ypusg
ySnoxyy sseq ySnoxyy sseq IaYRuUapI AyIAnOe PO
ysnomyy sseq ySnouiyy sse T_YRULpP! AIARDY HNNSTA-ALIALLDV-d
(=)D n ejep 198
ysnoryy sseq | y3noxyy sseq mYHUAPT AIAY LAVIS-ALIAILOV-d
)) }SI] UOT}eDIUIPT JXJUO0I-J
(=)D n (=) n ejep I9s0)
y3noayy sseJ y3noayy sseJ y3norys sseJ y3noryj sseJ Suayo],
y3no1ys sseJ y3noays sseJ Iaquun Terras jutod youig
y3noxy; sseq y3noxy; sseq ad £ azruonpudsay AZINOMHDNASTI-d
(=D n =D n ejep 19s]
ySnoxny; sseq ySnomny sseq | Iaquunu reras jurod ypousg MOIVIN-DNAS-d
(=)D n =) n ejep 1980
y3noxyy sseJ y3noiyy sseJ y3noryy sseJ y3noryy sseJ | Ioquunu yerras jurod ypusg
y3noxyy sseq y3noxy sseq adA7, MONIN-DNAS-d
(=2 n ejep 19s) HAID-TOYINOD-d
y3noxy} sseq y3noxy) sseq SuayO, ASVATI-NIIOIL-d
y3noxy; sseq y3noxy} sseq suadO], AAID-NTIOI-L
(=2 n (=2 n ejep 195 VIVA-ALITIEVdVO-d
wayuoD) asuodsay UO[VIIPUT 1sanbayy QUIDN 1DV] 20111 J UOLDIUISIL]

PanuUnuod SOATIWILIJ 90TAT9S UONjeJUSSaI]

I'IT H19dV.L

THE PRESENTATION AND SESSION LAYERS 251

the case. In all instances where the words “Pass through” appear in
Table 11.1, all the presentation service provides is access to the corre-
sponding session service. Note also that the presentation service pro-
vides (access to) four forms of information transfer services: normal,
typed, capability, and expedited data. These, too, are best explained in
the context of the underlying session service.

Connection Establishment The presentation connection establishment
service is invoked via the association control service element (Chapter
10), which supplies presentation (called and calling) addressing informa-
tion, presentation and session requirements, mode of operation (normal
or X.410-1984), and lots more.2

The semantics and composition of the presentation addresses used in
presentation connection establishment are discussed in Chapter 5; they
identify the application entities that will use the presentation connection.
Note that if an application entity is represented as a Directory object (see
Chapter 7), the ASN.1 definition of a presentation address in an entry of
“application entity object” class looks like this:

appl i cationEntity CBJECT- CLASS
SUBCLASS CF top
MJUST OONTAI N

commonNane,

present ati onAddr ess }
MAY CONTAI N {

descripti on,

| ocal i t yNane,

or gani zat i onNarre,

or gani zat i onUni t Nane,

seeAl so,

support edAppl i cati onCont ext }
;= {objectdass 12}

present at i onAddr ess ATTR BUTE
W TH ATTRI BUTE- SYNTAX
Present at i onAddr ess
MATCHES FCR EQUALI TY
SI NGLE VALUE
o= { attribute Type 29 }

2. A comparison of Tables 10.1 and 11.1 demonstrates how much of the information
required to establish an association between OSI applications “trickles down, percolates
up” through several service boundaries. The volume of information that is passed is daunt-
ing, and the repetition and cross-referencing between the service and protocol definitions
of several layers is one aspect of OSI standardization that contributes to much of the confu-
sion and dismay that afflict the OSI upper layers. The authors hope that readers will be suf-
ficiently comfortable by now with the concepts of the functions provided by the OSI upper
layers that the repetition will be recognized as an artifact of the rigid layering approach
prescribed by the OSI reference model.

252

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Present ati onAddress ::= SEQUENCE {

pSel ect or [Q] QOCTET STR NG CPTI ONAL,
sSel ect or [1] OCTET STRI NG CPTI ONAL,
t Sel ect or [2] QCTET STR NG CPTI ONAL,

nAddr esses [3] SET SIZE (1...MAX) OF OCTET STRING }
(Source: ISO/IEC 9594-6: 1990), “Selected Attribute Types.”

Presentation requirements are identified in terms of functional units, a
logical grouping of services somehow distinct from facilities. There are
three presentation functional units:

o The kernel consists of connection establishment, release, abort, and
normal information transfer (P-DATA service only).

» The context management facility provides the ability to alter the
defined context set (to add or delete a presentation context).

» The context restoration facility, used in conjunction with the resyn-
chronization service, allows the defined context set to be recorded
at specified points during data transfer. If the presentation connec-
tion is resurrected following a temporary failure, the DCS can be
restored to one known at the specified “restart” point (i.e., to one
that both presentation users remember).

Session requirements, also identified in terms of functional units, rep-
resent a checklist of the session services that will be used by the distrib-
uted applications. They are provided in the P-CONNECT primitives (see
Table 11.1) so that they can be used in the negotiation of a session con-
nection to support the distributed application.

A A The g.rouping. of.presentc'ztion services into both fuc.ilities and
functional units is an artifact of the CCITT/ISO “mind-meld.”
CCITT speaks of services in terms of facilities, and initially, the presentation ser-
vice was described in these terms. Later, when CCITT and ISO attempted to
merge several notions of the session layer into a single “service,” the term func-
tional unit was introduced to better describe the relationship between seemingly
disjoint services. Although the presentation service is initially described in terms
of facilities, the term is abandoned midway through ISO/IEC 8822 and never
used again.

In the normal mode of operation, these parameters are conveyed in
the connect presentation packet and the negotiated parameter values are
returned in the connect presentation accept packet (in Figure 11.1, the CP
and CPA PPDU, respectively). Recall from Chapter 10, however, that no

THE PRESENTATION AND SESSION LAYERS 253

Request er Responder

A- ASSCCI ATE. r equest
User dat a passed t
presentati onl aye
P- CONNECT. r equest
\ CP PPDU
CP header Uégr datkatof N~
packe P- CONNECT. i ndi cat i on
User dat ar ecei ved
T fronpresent ati onl ay
' A- ASSOOI ATE i ndi cati on
M
E A- ASSCCI ATE. r esponse
User dat a passed
topresentationl aye
_ .
CPA PPDU *
User dat a of P- CONNECT. r esponse
A h
/, CPA header OPA packet |d—

V P- CONNECT. confirm

FIGURE 11.1 Presentation Connection Establishment

protocol is exchanged above the session layer to establish an application
association with the X.410-1984 mode of operation; under these condi-
tions the presentation context definition list, default-context name, and
presentation requirements are always absent from presentation connec-
tion establishment primitives, since their values are fixed and under-
stood a priori by implementations that support the 1984 version of X.400
and are not needed to create a CP or CPA PDU. The connect presentation
reject packet (the CPR PPDU, not shown) is used by the presentation ser-
vice provider or the called application entity to refuse the presentation
connection. (If the provider refuses the connection request, it offers a rea-
son—default context not supported, incorrect protocol version, etc.—in
the CPR PPDU.) The application protocol associated with association
establishment (the AARQ and AARE APDUs; see Chapter 10) are typi-
cally submitted as user data—a presentation data value in the P-CON-
NECT primitives —and “piggybacked” in the presentation protocol, as

254

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

illustrated in Figure 11.1.

Many of the parameters used by association control during presen-
tation connection establishment are really intended for use in session
connection establishment. Among these are session requirements, session
connection identifier, initial assignment of tokens, and initial synch-point
serial number. These are used to negotiate a “proper” session connec-
tion—one that ensures that all the tools required for communication are
present. For example, if the reliable transfer service element is used by an
application process, synchronization services and activity management
would be included in the session requirements.

Release and Abort Services The presentation layer provides applica-
tion entities with access to the orderly (nondestructive) release service
offered by the session layer; parameters passed in the P-RELEASE ser-
vice primitives (user data and result, see Table 11.1) are used in the corre-
sponding session release service primitive. In the normal mode of opera-
tion, the application protocol used to support the A-RELEASE service is
passed directly as user data to the S-RELEASE service; no explicit presen-
tation protocol is used. (In Figure 11.2, the RLRQ and RLRE APDUs are
conveyed as user data in the session finish packet, the FN SPDU.)

The abort service operates in much the same manner as the presen-
tation release service. The application protocol used to support the A-
ABORT service is conveyed as user data in P-U-ABORT primitives and
subsequently transferred in the abort release user packet (in Figure 11.3,
the ARU PPDU). The presentation provider may also abort the presenta-
tion connection if a protocol error is detected; here, the abort release
provider packet (the ARP PPDU, not shown) is sent by the presentation
entity that detected the error. (This, of course, begs the question of
whether the presentation entity that generated an erroneous packet
remains capable of interpreting the ARP packet, but it does provide clo-
sure.)

Context Set Negotiation When a presentation connection is established
for a single application service element—the message transfer service ele-
ment of the OSI Message-Handling System, for example—the negotiation
process is a formality: all entries in the presentation-context definition list
should be supported. When an attempt is made to allow two or more
application service elements to share a single presentation connection,
the situation becomes more complex. If, for example, the initiating user
element wants to allow both the Directory and the common management
information service to operate over a single presentation connection, but
the responder doesn’t support the directory service, the responder can

255

THE PRESENTATION AND SESSION LAYERS

(=)D n (=)D n ejep 1os]
=D D =D D suayo],
=N N =N D| 1quunu Tenas yurod ypudg
(=N W ad 43 szruonpudhsay HZINOYHDNASTI-S
(=)D n (=)D n ejep 19sM]
=N | 1equnu [erss jutod youkg YO[VIN-DNAS-AS
(=)D n (=)D n ejep 1asM)
=N W =N | Tequmu fenras jutod YouLg
=N W adAL YONIN-DNAS-S
(=)D n ejep 198 HAID-"TOYINOD-S
=N A suadOoL, HSVHTI-NIMOL-S
=N A SUOL, HAID-NTIOI-S
=D n =D n ejep 19sM) VIVA-ALITIAVdVD-S
=N W ejep 19sM] V1VA-d4LIaddxd-s
=N N ejep Ias() VIVA-dddAL-S
=N A ejep JasM) v1va-s
W uoseal HQUM\VO.H& HMO@&Fm-m
(=)D n ejep 1as) 13049v-N-S
=N A }nsay
(=)D n (=)D n ejep 19sM] gSVATIY-S
(=)D n (=D n ejep 19sM]
=D D =D ®) JusWU3ISse UX03 [eHIU]
(=)D D (=)D D IdqUUNU [eLIds [eRIu]
=N W =N W syuawaImbax uoIssag
W W W W ad1A198 J0 Ajirend)
W W JnsAY
W W ssarppe uorssas Surpuodsay
W W mm@.:u—uw Commmwm ﬁmﬂwu
W W mmwﬁuUQ UOISSas wrﬁ:mU
(=) n (=) | I9YLUSPI UOTIOIUUOD UOISSAG IDANNOD-S
w1100 asuodsayy UoVILPUT 1sanbay QUVN A2JIUDAD] 201711U1L J U01SSIS

SPAQIWILL] DIAIIG UOISSS 71T AIAV.L

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

256

=D n uoseay| AQAVOSIA-ALIALLDV-S
=D n uosesy | LINMIHLINI-ALIAILDV-S
(=)D n (=)> n ejep 19s0)
=N N | Tequnu [erss jurod youikg ANH-ALIALLDV-S
(=)D n ejep 1as)
=N W (] UOT}D_UUOD UOISSas PO
=N N | Toqumu ferrass jutod ypuig
=N W 1RYRULp! A31A1de PO
=N W ISYRULPT A1ATOY HNNSTA-ALIALLDV-S
(=)D n ejep 19s)
=N N RY[UIPI AJARDY LIVIS-ALIALLDV-S
N uosedy | LIOJHI-NOLLIHDXH-S-S
=D n ejep 1as)
=N W uosedy | LIOJTY-NOLLIADXI-N-S
D D ISI[UOT RO FUSPI JXJU0D-G
waLfuo) asuodsayy UOLYIIPUT 15anbayy QUIDN 42JIUDIV] 2011ULL] U0ISSIS

PaNUNIUOD SOAITWILI] DIAIIG UOISSAS 7’11 H1dV.L

THE PRESENTATION AND SESSION LAYERS

257

Request er

A- RELEASE. r equest

User dat a passed t
present ati onl aye

{

P- RELEASE. r equest

S- U RELEASE. r equest

m< — 4

//

S- RELEASE. confirm

P- RELEASE. confirm

¥
(==

- RELEASE. confirm

sl
Net wor k

A
FN SPDU RLRQ
APDU
(Noexplicit

present ati orpr ot ocol)

FIGURE 11.2

DN SPDU RLRE
header APDU
(Noexplicit

present at i orpr ot ocol),
APDUI s conveyed
asuser dat aof
sessi on DN SPDU

7

Responder

S U RELEASE i ndi cati on

P RELEASE¢ ndi cati on

-

-
\

User dat a passedfro
present at i onl ayer

A- RELEASE. i ndi cati on
A- RELEASE. r esponse

User dat a passedt (
present ati onl ayer

V]

4

AN

\J
P- RELEASE. r esponse

S- RELEASE. r esponse

Normal Release of a Presentation Connection

selectively reject all the entries on the list that are associated with the
Directory, and the initiator can determine that only common manage-
ment information service can be supported over the resulting presenta-
tion connection. (Situations such as this are the exception rather than the

norm.)

Negotiation and Renegotiation of Transfer Syntax For those situa-
tions in which a presentation connection is to be shared or reused by dif-
ferent application service elements, the presentation layer provides an
“alter context” service—a user element can add entries to and delete
entries from the defined context set (using the presentation context addi-

258

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Request er Responder

A- ABCRT. r equest

Passed user dat a
topresentationl ay

P- U- ABORT. r equest

T (| 2 ABRT T .
PPDU APDU P- U- ABCRT. i ndi cat i on

| header

M (APDUsent as user datai Y

E AB SPDU Passed as user dataf1

of sessi onpr ot ocol) presentat i onl ayer

A- ABCRT. i ndi cati on

Y

FIGURE 11.3 User-initiated Abort of a Presentation Connection

tion list and presentation context deletion list parameters, respectively).
When is this necessary? Consider the scenario in which an FTAM associ-
ation exists between two open systems, and a user on one system decides
to make use of the OSI Directory. Using the P~-ALTER-CONTEXT service,
the necessary presentation contexts can be added to the defined context
set of the presentation connection that already exists. The initiator sends
the revised presentation context in an alter context packet, and the
responder acknowledges the revisions using the alter context acknowl-
edgment packet. In Figure 11.4, these are the AC and ACA PPDUs,
respectively.

Is this useful? It's yet another form of multiplexing, and only time
and experience will demonstrate whether the savings in performance is
worth the implementation complexity.

Data Transformation to and from Transfer Syntax Transforming data
to and from transfer syntax is the basic and essential service of the pre-
sentation layer. Data submitted by a sending application service element
are transformed from the local syntax to the common transfer syntax,
transferred from the source system to the destination system, then trans-
formed into the local syntax understood by the receiving application ser-
vice element at the destination system. This is performed for all transfers

THE PRESENTATION AND SESSION LAYERS 259

Request er Responder

P- ALTER- CONTEXT. r equest

s e B

P- ALTER- CONTEXT.
indication

Addpr esent ati on
cont ext sfor DSE
totheDCS

mz — -

P- ALTER- CONTEXT.
response

——— ACA PPDU

P- ALTER- CONTEXT. confirm

FIGURE 114 Changing the Defined Context Set

of presentation data values (user data). This encoding/decoding is nor-
mally provided in one of two ways: either the application provides for
encoding/decoding itself, perhaps assisted by ASN.1 compiler tools, or
the encoding/decoding is provided within the presentation layer.
(Although the second alternative would seem to be the obvious choice,
the first is more efficient because it avoids “double encoding”: encode
data in the local syntax, then in the transfer syntax.)

Information Transfer, Dialogue Control The intention to use session
services—including mode of data transfer (duplex, half-duplex), activity
management, and synchronization services—is indicated in the P-CON-
NECT.request primitive (see Table 11.1). This is the setup process for an
application to use pass-through services. The list of required session ser-
vices continues on its “trickle down, cross the network, percolate up”
journey from the initiating user element to the target user element in two
forms. Information is passed to the presentation entity to request “addi-
tional” session services during session connection establishment, dis-

260

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

cussed later in this chapter. The session service requirements of the
requester may also be conveyed in the optional User session requirements
field (Figure 11.5) of the connect presentation packet (in Figure 11.6, the
CP PPDU) by setting the appropriate bit of the ASN.1 BITSTRING data
structure to a value of 1.

User-session-requirenents ::= BI T STR NG {
hal f - dupl ex (0),
dupl ex (D,
expedi t ed- dat a (2),
m nor - synchr oni ze (3),
naj or - synchroni ze (4,
resynchroni ze (5),
acti vi t y- managenent (6),
negot i at ed-r el ease (7,
capabi lity-data (8),
excepti ons (9),
t yped- dat a (10) }

(Source: ISO/IEC 8823: 1988)

FIGURE 11.5 Abstract Syntax of User-session-requirements field of the
Connect Presentation Packet

If session synchronization services are requested, an initial serial
number may be provided (a session user option; see the discussion of ses-
sion synchronization services, later in this chapter). The initial direction
of information transfer—requester side first, accepter side first, accepter
side chooses—may also be specified to indicate “who speaks first.” These
values are used locally, in the creation of an S-CONNECT.request.

When the connection establishment process is completed, the ses-
sion services negotiated during that process are available via the pass-
through presentation services. The following section examines the session
layer and its services in more detail.

AR A This all seems rather unnatural. Why not have application ser-
vice elements perform the very capabilities they present to user
elements? The reasons are largely historical and political. Early in the develop-
ment of OSI, CCITT and ISO agreed that sharing a single reference model for
open systems was a good thing. Having two very large, consensus-driven orga-
nizations participate in joint development of a single set of protocols and ser-
vices, however, was not. Setting aside the issue of cultural differences, coordinat-
ing —and particularly, sequencing— the development of standards proved daunt-
ing from the outset. Committees were formed in both standards bodies for all
seven layers (and then some), and these proceeded in parallel; under such cir-

THE PRESENTATION AND SESSION LAYERS 261

cumstances, it turned out to be impossible to define standards using a top-down
or bottom-up approach. At first, coordination seemed a minor inconvenience; the
OSI RM, after all, was there to guide all the standards committees. But the OSI
RM itself was revised on several occasions to accommodate “pre-OSI” CCITT
recommendations such as the T.62 session protocol for teletex communications
and the X.25 packet-level protocol. The result? Functions that arguably should
lie in the application layer were assigned to the session layer because the X.400
MHS recommendations were “ready to ship” before the application layer struc-
ture was completed (see Chapter 8).

How bad is the resultant upper-layer architecture? Although pass-
throughs preserve architectural purity, they are inconvenient: application ser-
vice elements pass parameters for session in procedure calls to presentation,
which copies or passes pointers to the same parameters in procedure calls to ses-
sion, resulting in what one OSI implementer describes as “silly little no-op
pass-through routines, slowing down the whole stack. . . .”3 Exaggerated? Only
in the sense that in the overall performance of OSI implementations, this is
probably not the killer. An alternative? OSI might have adopted the “tool-kit”
philosophy from the application-layer structure earlier in the process, but that’s
another case of “hindsight.”

Session Layer

Information exchange between computer systems can be viewed as hav-
ing two fundamental components. The first is information transfer: mov-
ing the information from its origin or source to its destination. In OSI
(and TCP/IP), this aspect of information transfer is the responsibility of
the transport service. Now, the transport service moves data between
open systems transparently; that is, the transport service is only responsi-
ble for the transfer of an unstructured or “raw” bit stream of information
from one open system to another, and it doesn’t know or care where
application data begin and end. Applications, however, do. The second
fundamental component—preserving the structure of data defined by
communicating application processes—belongs to the session service
(ISO/IEC 8326: 1987). Thus, in addition to the expected connection man-
agement services—connection establishment, release, and abort—the ses-
sion layer provides application processes with the synchronization,
checkpointing, and resynchronization mechanisms to organize and

3. From an electronic-mail conversation about the presentation layer with Lisa Phifer.

262

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Session Services

impose structure on data exchanged. These are collectively referred to as
dialogue-control facilities.

A further aspect of transport service transparency is that the trans-
port service isn’t expected to know or care whether transport service
users take turns sending data or do so simultaneously, or even whether
consecutive data are submitted by the same application. The responsibility
for maintaining control of the conversation(s) that take place between
communicating application processes also belongs to the session service.
The session layer provides application processes with the following
mechanisms to control the conversations, or dialogues, conducted by com-
municating application processes:

« Facilities that enable applications to “take turns” exchanging data
or otherwise influence information exchange. The coordination of a
half-duplex method of information exchange, synchronization ser-
vices, and activity management services are governed by the
assignment of tokens. Token-based facilities also enable application
processes to coordinate the “graceful” release of associations; they
enable applications to make sure that all information transfers are
complete before their communication is terminated (if this was the
way they chose to behave).

 Facilities that allow application processes to conduct several
exchanges in the context of a single session connection. Since the
unit of application exchange is called an activity (see Chapter 10),
the facilities that enable applications to “distinguish between differ-
ent pieces of logical work” (ISO/IEC 8326: 1987) are collectively
referred to as activity management.

There are more than 20 session services (see Table 11.2). For identification
during connection negotiation and also for convenient identification by
other standards (notably the presentation service, where session service
requirements must be indicated by application entities during association
establishment), session services that are related are logically grouped into
functional units. Each functional unit is examined separately in the follow-
ing sections.

The Kernel Functional Unit The kernel functional unit consists of ses-
sion connection establishment; “normal” data transfer (half- or full-
duplex); graceful, or orderly, release; and user- and provider-initiated
abort services. All session connections require use of the kernel. During
connection establishment, the availability of the session services required
by the application entities that will use the session connection is deter-

THE PRESENTATION AND SESSION LAYERS 263

mined by the session service users (the presentation entities).

There are actually four steps associated with the session functional
unit negotiation process, and the actions performed are best described by
examining the OSI upper layers together:

1. Formally, the calling application entity invokes the association con-
trol, in the process identifying the application’s session require-
ments for communication (see Chapter 10); these are “trickled
down” to the presentation entity in the P-CONNECT.request and
to the session entity in the SSCONNECT.request. In practice, this
might be implemented as a series of procedure calls within an
“association/connection management” module, with each call
passing as a “user data” parameter the protocol data unit(s) of the
higher-layer entity. Armed with the cascaded set of CONNECT.
request packets, the calling session entity establishes a transport
connection (see Chapter 12), and a session connect packet (a CN
SPDU) is constructed and submitted to the transport layer in a data
request. If shorter than 512 octets, the connect presentation packet
(the CP PPDU) is conveyed in the user data parameter of the ses-
sion connect packet; if between 513 and 10,240 octets, it is conveyed
in the extended user data parameter of the session connect packet
(available in session version 2 only). Otherwise, only the first 10,240
octets of the CP PPDU are sent in the extended user data parameter
of the CN SPDU, followed by one or more connect data overflow
packets (CDO SPDUs). (Note that Figure 11.6 and this discussion
show only the scenario in which everything fits in a single CN
SPDU.)

2. The called session entity receives the CN SPDU, parses it, and gen-
erates an S-CONNECT.indication, passing among the parameters
the set of session functional units indicated by the called presenta-
tion entity (and encoded in the CN SPDU), and session service user
data (containing the CP PPDU). The called presentation entity
extracts the connect presentation packet (the CP PPDU) and uses
the encoded data to generate a P-CONNECT.indication (see Figure
11.1 and the accompanying text). The user session requirements
from the calling application entity are identified to the called appli-
cation entity in the indication (“percolating up” of parameters). The
called application entity may make adjustments to user session
requirements, based on (a) options left for the called application
entity (for example, the calling application entity might have pro-
posed both half- and full-duplex modes of transfer, effectively say-

264

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

ing to the caller “You choose”) or (b) known limitations to the
underlying session implementation (e.g., if a session functional unit
requested by the calling application entity is not supported).

If the resulting list still satisfies the application requirements as
understood by the called application entity, it uses association con-
trol to accept the association, and the revised session requirements
are “trickled down” in the presentation and session CONNECT.
response primitives, again in the manner described in step 1. The
revised requirements are encoded in the session accept connection
packet (in Figure 11.6, the AC SPDU), which is returned over the
transport connection to the calling session entity. Note that the ses-
sion functional units that will be used over the session connection
are defined as the intersection of what the called and calling session
entities exchange in the session user requirements field of the CN
and AC SPDUs. Negotiation is thus a “whittling down” rather than
a “bartering” process.

4. The calling session entity parses the AC SPDU, determines (and
records) the session functional units that will be used across the ses-
sion connection, then percolates the revised set up as per step (2).

This entire sequence is illustrated in Figure 11.6.

SATH A E?en though the OSI upper layers are forn'mlly orgc'mized ina
hierarchy, from an examination of the information passed
through the presentation layer it is obvious that a purely “clinical” interpreta-
tion of the interactions among application, presentation, and session entities
would be extremely inefficient. Well-behaved implementations of the OSI upper
layers frequently lump association, presentation, and session connection man-
agement together as a single process that is aware of, for example, the comple-
ment of session functional units available in a particular implementation, the
available application service elements, and the requirements they impose on both
the presentation layer (what presentation syntaxes) and the session layer (what
services). In such implementations, connection management is far from the scav-
enger hunt the standards depict.

The Many Faces of Data Transfer (Full-Duplex, Half-Duplex, Expe-
dited, and Capability Functional Units) There are two modes of nor-
mal data transfer: full-duplex (both directions at the same time) or half-
duplex (either direction, only one direction at a time, with the choice of
direction being controlled by the session service users). The half-duplex
functional unit uses the give tokens and please tokens services (S-
TOKEN-GIVE, S-TOKEN-PLEASE): a data token is exchanged between

THE PRESENTATION AND SESSION LAYERS 265

Request er Responder

A- ASSCCI ATE. r equest

(]

P- CONNECT. r equest

Gl

& S- CONNECT. r equest

e ot | N

Transpor t
connection ———
: est abl i shrent
(Chapt er 12)

CN SPDU]
~
Astransport dat: /- o _PPDY

S- OONNECT. i ndi cati on

V S
] |
p

P- GONNECT. i ndi cati on

mz— 4

A- ASSOO ATE i ndi cati on

Revi se
sessi on
requi renent ¢

A- ASSQO ATE. response —

f AARE APDU

P- CONNECT. r esponse

v}
S

T o~ W

CONNECT. r esponse
Revi se,
record

revi si ons

(3

Recor dr evi si ons

ACPC | CP PPDU
per col at eup

AC SPDU
Astransport dat:

FIGURE 11.6 Negotiating User Session Requirements

266

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

the two communicating session service users to control the direction of
information flow.

The notion of token-based data transfer is a pretty simple one: if
you hold a token, you can use the service governed by that token (in this
case, you can use the normal session data service); if you don’t have the
data token, you can request it using the please tokens service, or you can
wait until the data token is yielded via the give tokens service, but you
can’t use the normal session data service until you hold the data token.

There are several ways to bypass the data token. In addition to the
normal data transfer service, there is an expedited data transfer service.
Expedited data are uninhibited by token/flow control but extremely lim-
ited in size (a mere 14 bytes). Originally, this data service was perceived
to facilitate virtual terminal services, but outside of this, it’s not especially
useful, particularly since virtually nothing can be BER-encoded in 14 or
fewer bytes. Typed data transfer can be used even if you don’t hold the
data token; it’s sort of a “token be damned, I'm sending data” service. Of
course, restrictions apply: the typed data service is available only when
the half-duplex mode is selected. It is used by commitment, concurrency,
and recovery (ISO/IEC 9804: 1990) and the Virtual Terminal (VT; ISO/
IEC 9040: 1990). CCR uses typed data to request a restart, whereas
Virtual Terminal uses typed data to switch VT profiles. Both CCR and VT
use the half-duplex mode and clearly find occasions when it might have
been wiser to use full-duplex, if only to have it available for exception
cases. (This probably argues strongly for having standardized a full-
duplex-only session service rather than a full-duplex service plus a half-
duplex service with a patchwork exception service.)

A fourth data functional unit, capability data, is best understood, and
only applicable, in the context of activity management.

Activity Management Functional Unit Chapter 10 discusses how the
RT-TRANSFER service accepts arbitrarily large user data from a user ele-
ment and treats each submission as a separate transfer activity (an indi-
vidual application protocol data unit). At the session layer, the activity
concept is preserved: APDUs submitted to the presentation layer in P-
DATA requests can be distinguished as individual activities by using the
services that comprise the activity management functional unit. In particu-
lar, activity services are used to identify the beginning and end of an
activity (S-ACTIVITY-START, S-ACTIVITY-END), to interrupt and later
resume an activity (S-ACTIVITY-INTERRUPT, S-ACTIVITY-RESUME),
and to discard an ongoing activity, (a transfer that for some reason has
become expendable and can be trashed [S-ACTIVITY-DISCARD]).

THE PRESENTATION AND SESSION LAYERS 267

Session activity management services are accessed by application
entities using activity pass-through facilities of the presentation layer.
The P-ACTIVITY-START and P-ACTIVITY-END primitives, for instance,
map directly onto the S-~ACTIVITY-START and S-ACTIVITY-END primi-
tives. As an example, Figure 11.7 illustrates the sequence in which an
activity is started by the application entity using the P-ACTIVITY-
START primitive; the request is passed through to the session service in
the form of a directly mapped S-ACTIVITY-START, which is communi-
cated across the network via the activity start packet (in Figure 11.7, the
AS SPDU).

If a single application entity is using a presentation connection,
activities aren’t very interesting. If the presentation connection is shared
between two application entities between ASEs of the OSI Message
Handling System and the Directory, for instance—activity management
can play an interesting role. Consider, for example, a situation in which
the MHS and the Directory share a presentation connection between two
computers, “Michaelangelo” and “Donatello.” The message transfer
application service element at Michaelangelo is in the process of for-
warding a jumbo mailgram to Donatello when a directory user attempts
to retrieve some naming/ addressing information (perhaps the name of
a bodacious pizza parlor). Rather than delay the directory request until

Request er Responder

P- ACTI VI TY- START. r equest

S- ACTI VI TY- START. r equest

\ AS SPDU [— g

\

S- ACTI VI TY- START.
i ndi cation

mz — o

P- ACTI VI TY- START.
indi cation

y

FIGURE11.7 Activity “Pass-throughs”

268

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

the jumbo mailgram is transferred, the sending application entity can
interrupt the mail activity using the S-ACTIVITY-INTERRUPT service
(via the P-INTERRUPT pass-through). The progress of the mail activity is
suspended, and a directory activity is started. When the directory activity
is ended, the progress of the mail activity is resumed using the S-ACTIV-
ITY-RESUME service (via the P-ACTIVITY-RESUME pass-through).

The S-ACTIVITY-INTERRUPT service may also be used in situa-
tions in which an application process is temporarily unable to continue
processing the activity in progress (its ability to continue to receive data
is compromised). In such cases, a new activity may not be started (a rea-
son for interrupting the ongoing activity may be provided to the session
layer via the pass-through mechanism; this is conveyed in session proto-
col, and no presentation protocol is involved).

Figure 11.8 illustrates the sequence in which an activity is interrupted.
An activity “foo” is started (an AS SPDU is sent), data are transferred
(via the normal data-transfer mode, DT SPDU), then “foo” is interrupted
(in this case, to start an activity “bar”). The initiator sends an activity
interrupt packet (AI SPDU), and the responder acknowledges the inter-
rupt request using the activity interrupt acknowledgment packet (AIA
SPDU). The initiator then starts activity bar, sends data, and resumes
activity “foo” using the activity start, normal data and activity resume
packets (AS, DT, and AR SPDUs, respectively).

Activity management is a token-based service; only the holder of the
major/activity token may interrupt or start an activity.* Whenever an activ-
ity is started, an activity identifier is assigned to that activity. If an ongoing
activity is interrupted, the state of both the “old” and “new” activities is
maintained. If, for example, major, minor, and/or resynchronization ser-
vices are in use, the value(s) of the serial number(s) significant to the (old)
activity at the point at which it was suspended is (are) stored for that
activity, and the serial number(s) may be used for the new activity.

In case readers wondered whether the designers of the OSI session
layer had overlooked anything, rest easy—they did not. Leaving absolute-
ly nothing to chance, they even considered the scenario in which an

4. When transport expedited data service is available, a special SPDU, called a prepare
(PR) SPDU, is used to “warn” the peer session provider that something “big” is about to
happen—a major synchronization acknowledgment, resychronize, or resynchronize
acknowledgment packet (MHA, RS, or RA SPDU) is coming. The PR SPDU is sent on the
transport expedited flow, indicating that incoming SPDUs received on the transport nor-
mal data flow may be discarded under certain circumstances. For example, when an activi-
ty is interrupted, a PR SPDU is used to signal “prepare to resynchronize,” letting the peer
session provider know that it can ignore incoming normal data flow until the AI SPDU is
received.

THE PRESENTATION AND SESSION LAYERS 269

Request er Responder

S- ACTI VI TY- START. r equest

EXI e

S- ACTI VI TY- START.
i ndi cation

Suspend \ -
DT SPDU [——®
activity \

"f 00"

S- DATA. r equest

S DATA i ndi cation

S- ACTI VI TY- | NTERRUPT.

Al SPDU B —
T
S- ACTI VI TY- | NTERRUPT.
i ndi cation
S- ACTI VI TY- | NTERRUPT.
response

S- ACTI VI TY- | NTERRUPT.
confirm - Al A SPDU

Begi n
activity
“bar"

S- ACTI VI TY- START. r equest
\

AS SPDU | ——® | —_

S- ACTI VI TY- START.
indication
S- DATA. r equest

\

DT SPDU | ——— \

S DATA i ndi cati on

Resune
activity
“f 00"

S- ACTI VI TY- RESUME. r equest

\
] |

S- ACTI VI TY- RESUME.
i ndi cation

FIGURE 11.8 Interrupting an Ongoing Activity

270

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

activity has just ended, and before another activity is started, there might
arise a need for an application to send a small amount of information—
say, a nice, round number like 512 octets—prior to invoking the ACTIV-
ITY-START service. (Hey, who knows? It could happen. Really.) Capabil-
ity data transfer offers just such a service. It can be invoked only when
activity services are available but no activity is in progress, and only if one
holds the major/activity token and has the right to start the next activity
(if available, one must also hold the data and/or minor synch token as
well). Capability data transfer is sort of like a TV commercial: it can only
be invoked “between” activities. Unlike the other data transfer services
offered by the session layer, it is a confirmed service. This is necessary to
ensure that the data transfer is completed before a new activity is started.

Major and Minor Synchronization Functional Units Chapter 10 intro-
duced the concept of checkpointing, a facility that enables applications to
identify during data exchange “points” in the transfer to which they may
return in order to recover from (temporary) communications failures
with a minimum amount of retransmission. The session S-SYNC-MAJOR
and S-SYNC-MINOR services are used to provide the checkpointing, and
the session S-RESYNCHRONIZE service is invoked to recover from tem-
porary communication failure with a minimum of retransmission. As
with the other pass-through services, these session services are indirectly
accessed by application service elements via the corresponding presenta-
tion services (P-SYNC-MAJOR, P-SYNC-MINOR, and P-RESYNCHRO-
NIZE, respectively).

All of the synchronization services use a serial number, a binary-
coded decimal number between 0 and 999,999, to identify points in the
byte stream. The decimal number bears no relationship to the octet posi-
tion of the data being transferred; rather, it has a specific and somewhat
different meaning or purpose for each synchronization service. In the
major synchronization service, for example, the serial number indicated
in an S-SYNC-MAJOR service invocation identifies both the end of a pre-
vious unit of communication called a dialogue and the beginning of the
next. An important characteristic of a dialogue unit is that once an S-
SYNC-MAJOR.request has been made, the requester can make no further
service requests—especially additional data-transfer requests—of any
kind until it receives the corresponding S-MAJOR-SYNC.confirm. The S-
SYNC-MAJOR.request demands that no further action be taken with
regard to transferring data within this activity® until both the sender and

5. Note that if the activity functional unit is not selected, there is, in effect, one and only
one activity transmitted over the session connection.

THE PRESENTATION AND SESSION LAYERS 271

the receiver share a common understanding that previously transferred
data have been secured (note that the current activity can be interrupted
or discarded, or the session connection can be aborted).

The S-SYNC-MINOR service provides secondary or finer granularity
to the checkpointing within an activity. Minor synchronization is distin-
guished from major synchronization in the following ways:

* An S-SYNC-MINOR.request may be issued as a confirmed or an
unconfirmed service, at the sender’s discretion.

« While an S-SYNC-MINOR:.request is outstanding, any other service
can be requested, including additional S-SYNC-MINOR.requests.

» The confirmation of an S-SYNC-MINOR.request or an S-SYNC-
MA]JOR.request implicitly confirms any outstanding S-SYNC-
MINOR.requests.

Just as major synchronization points structure data exchange with-
in an activity, minor synchronization points structure data within a dia-
logue unit. An example of a properly structured activity is illustrated in
Figure 11.9.

Both the major and minor synchronization functional units include
the give tokens and please tokens services; these are used to assign con-
trol of the major/activity token and synchronize-minor token. Only the ses-
sion service user that holds the major/activity token may invoke the S-
SYNC-MAJOR service; similarly, only the session service user that holds
the synchronize-minor token may invoke the S-SYNC-MINOR service.

Symmetric Synchronization Some applications can operate in full-
duplex mode. A set of computers that form a constantly replicating data-
base, for example, could exchange information bidirectionally. In such
scenarios, each application must have the ability to checkpoint both
directions of information flow independently; the synchronization ser-
vices should be symmetric. At the session layer, this translates into pro-

D al ogue D al ogue
uni t uni t

[T]

S S S N R

Activity M nor M nor Maj or M nor M nor Activity
start synch synch synch synch synch end
poi nt poi nt poi nt poi nt poi nt

FIGURE 11.9 Structured Exchange of Data

272

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

viding a capability for both session service users to insert checkpoints
into their “send” flow. When symmetric synchronization is used, a ses-
sion entity maintains two serial numbers—one to checkpoint what it
sends and one to checkpoint what it receives. ISO/IEC 8326 Addendum
1: 1987 and ISO/IEC 8327 Addendum 1: 1987 identify the extensions to
the major and minor synchronization services to accommodate symmet-
ric synchronization. Basically, two serial numbers are identified/ negoti-
ated /exchanged at connect time and during activity start or re-sume. The
values of both serial numbers are used to identify a major synchroniza-
tion point or an activity end/interrupt. If resynchronization services are
selected, resynchronization can be invoked independently on either
direction of information flow or simultaneously (here, both serial num-
bers must be provided).

The original session service and protocol standards were
S A designed to be compatible with the CCITT Recommendation
T.62 session protocol for Teletex services, and the agreement between ISO and
the CCITT was that the 1984 X.215/X.225 recommendations and the 1SO/IEC
8326/8327 session standards would contain identical text. Now, T.62 session
services were designed to operate in a half-duplex mode. Since only one of the
session service users transferred data at a time, there was a need for only one ses-
sion synchronization serial number. When full-duplex operations were intro-
duced into the session standard, a second serial number was required to enable
session service users to control each direction of information flow independently —
to operate minor synchronization and resynchronization services. This is all well
and good, but the timing of this “discovery” was unfortunate. Since CCITT
closed the 1984 study period while symmetric synchronization was still under
study, the Red Book versions of the CCITT recommendations and the I1SO ses-
sion standards were published without it. Symmetric synchronization services
and protocol were introduced as addenda to the session service (ISO/IEC 8326
Addendum 1: 1987) and protocol (ISO/IEC 8327 Addendum 1: 1987) and in the
1988 Blue Book recommendations.

Resynchronize Functional Unit The S-RESYNCHRONIZE service is
used to:

» Recover from temporary loss of a transport connection with a mini-
mum of retransmission. Here, the restart option is indicated in the
S-RESYNCHRONIZE.request and conveyed in the session resyn-
chronize packets.

e Discard or abandon data hitherto associated with the current dia-
logue unit.

THE PRESENTATION AND SESSION LAYERS 273

+ Set the synchronization-point serial number to any valid value.

In all forms of the SSRESYNCHRONIZE service, the requester may
propose a (new) assignment for the available tokens (or it may indicate
that the accepter is allowed to assign token ownership). In the case of a
“restart” request, the requester indicates the serial number at which the
restart is to commence; it is effectively saying, “I'm confident that the
transfer state is reliable to up to this point; let’s resume transfer here.” The
accepter sets the lowest serial number to which a synchronization point
confirmation is expected; it also sets the next serial number expected to the
restart serial number indicated in the session resynchronize (restart) pack-
et (RS-r SPDU). At this point, the accepter has modified its state machine
to reflect that of the requester, so it sends a resynchronize (restart)
acknowledgment packet (the RA-r SPDU). Upon receiving the RA-r
SPDU, the requester may retransmit data (see Figure 11.10). The accepter
may discard any data secured and associated with a serial number greater
than the serial number indicated as the restart serial number; from the
requester’s perspective, these are “suspect” or unconfirmed data.

In the case of an “abandon” request, the requester does not send a
serial number, since it’s effectively saying, “Let’s start over.” In response
to the session resynchronize (abandon) packet (the RS-a SPDU), the
accepter returns a session resynchronize (abandon) acknowledgment
packet (the RA-a SPDU), discards all data of this dialogue unit that were
previously secured, and awaits “new” transfer. In this case, the accepter
expects to proceed as if resynchronization hadn’t happened at all. The
serial number indicated in the next major/minor synchronization
request will be the “next expected serial number” indicated in the RS-a
SPDU, and the lowest serial number to which a resynchronization restart
may be set becomes 0.

In the case of a “set” request, the requester selects any valid serial
number and sends this in an RS-s SPDU. The accepter sets the next
expected serial number to the value received in the RS-s SPDU, and
returns an RA-s SPDU. Following receipt of the RA-s SPDU and confir-
mation of the S-RESYNCHRONIZE.request, the requester will use the
“set value” in subsequent synchronization requests, and the lowest serial
number to which a resynchronization restart may be set becomes 0.

Like the major and minor synchronization services, application
entities access the session resynchronization service via a pass-through
service of the presentation layer (P-RESYNCHRONIZE).

Exceptions Functional Unit Considering how complicated the session
protocol can be, it seems only fitting that a service was designed to allow

274

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

I'nitiator/Request el Responder/ Accept er

(03]
Net wor k
P- RESYNCHRONI ZE. r equest

S- RESYNCHRONI ZE. r equest

[|

S- RESYNCHRONI ZE.
i ndi cati on

P- RESYNCHRONI ZE.
i ndi cati on

Restart
t hedi al ogue
fromthis
seri al nunber

mz —

P- RESYNCHRONI ZE.
response

S- RESYNCHRONI ZE.
response

~4—— | RSt SPDL ||
S RESYNCHRONI ZE. ¢
confirm

P- RESYNCHRONI ZE.
confirm

Begi n
dat at ransf er
from'restart
seri al nunber"

y

FIGURE 11.10 Resynchronization “Restart”

the session service provider to notify session service users of “unantici-
pated situations not covered by other services” (from ISO/IEC 8326:
1987). The presentation exception reporting service (S-P-EXCEPTION-
REPORT) can be used to signal a protocol or “nonspecific” error to ses-
sion service users. If a protocol error has been detected by either session
protocol machine (SPM), that SPM may attempt to transfer an exception
report packet (an ER SPDU), which contains as a parameter the SPDU

THE PRESENTATION AND SESSION LAYERS 275

that the session protocol machine has identified as objectionable.
Following an indication of this sort, the session service users are encour-
aged to resynchronize, interrupt or discard the current activity, or abort
the session connection. (Note that only if the transfer and interpretation
of the ER SPDU are successful will both session service users receive an
indication that an exception condition has been detected.)

An exception reporting service is also available to the session ser-
vice users. If a session service user encounters an exception condition, it
can issue an S-U-EXCEPTION.request. The local session protocol
machine will attempt to transfer an exception data packet (an ED SPDU)
to the remote SPM containing an indication of the sort of physical, emo-
tional, or psychological problem the requester is experiencing. If the ED
SPDU arrives and can be processed, an S-U-EXCEPTION.indication may
be generated.

M Although it is possible to attempt to resynchronize, interrupt,
s
or discard the current activity, or even yield tokens to a session
service user that thinks it can solve the problem if only it could send data, it’s
generally a good idea for the session service user to follow exception service
requests with an abort. Dynamic, self-recovering protocol implementations are
hard to find.

Negotiated Release Functional Unit The negotiated release functional
unit consists of orderly release and the give tokens and please tokens ser-
vices. The orderly release service (S-RELEASE) resembles the graceful
close offered by TCP (see Chapter 12); both session service users cooper-
ate to ensure that all data in transit have been delivered (acknowledged)
before the session connection is closed. Orderly release is influenced by
the release token; if an S-RELEASE.indication arrives and the release token
is available, the accepter may refuse to release the connection (once again
belying the term accepter). This situation might occur when a mail appli-
cation “foo” has nothing more to send to its peer “bar” and wishes to
release the association, but “bar” still has messages to forward to “foo”.
Orderly release is initiated using the S-RELEASE.request service
primitive. A session finish packet (an FN SPDU) is sent to the accepter; if
the accepter agrees to close the session connection, it returns a session
disconnect packet (DN SPDU), confirming the S-RELEASE. A transport
disconnect parameter in the DN SPDU may be used to indicate whether
the transport connection hitherto supporting this session connection is to
be reused, and the session protocol machine will proceed according to

276

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Session Protocol

what is indicated. If the accepter wishes to maintain the session connec-
tion, it responds to the FN SPDU with, appropriately, a session not fin-
ished packet (NF SPDU), resulting in a rejection of the S-RELEASE ser-
vice. This is permitted only if the negotiated release functional unit was
accepted when the session was established.

Abort Services The session abort service (S-U-ABORT) of the kernel
functional unit supports the abort services of the association control ser-
vice element and the presentation layer. What more can one say? An
application entity has observed that things have gone to hell in a hand-
basket and indicates that it wants to tear down the connection. The pre-
sentation abort service (S-P-ABORT) is used to indicate that something
disastrous has occurred in or below the session layer; the protocol imple-
mentation is broken, for example, or the transport connection has discon-
nected. If the latter is true, the session layer initiates an S-P-ABORT.indi-
cation to notify the presentation layer.

Most of the descriptions of the session protocol have been vicious and
unkind. Regrettably, they are deserved, and no amount of historical per-
spective can alter the fact that the session protocol, from encoding to
operation, is neither elegant nor efficient.® In version 1, there are 29 states
in the protocol machine, further complicated by 75 predicates—and this
doesn’t take into account additions to accommodate unlimited user data
(ISO/IEC 8327 Addendum 2: 1987) or symmetric synchronization
(ISO/IEC 8327 Addendum 1: 1987). The encoding of the session protocol
itself is a “fixed-field format” lover’s worst nightmare. For starters, all
session protocol data units have the following components:

SPDU identifier (SI) A single octet; identifies the type of SPDU

Length indicator (LI) A single octet; specifies the length of the SPDU in octets
Parameter identifier (PI)| An individual or a group parameter (variable-length)
User information (Variable-length)

6. Upon first examination, it almost appears that its creators were a divided camp, half
insisting on a “TLV” approach similar to ASN.1, the other half insisting on specification by
the bits and bytes “as we’ve always done it in the lower layers.” The true reason is not
nearly this simple. The session protocol is arguably the worst example of design by com-
mittee; faced with multiple base documents to consider (one from ECMA [ECMA75], one
from CCITT [CCITT T.62], others too embarrassing to mention), confronted with a commit-
ment to align OSI and the CCITT Teletex protocols, and expected to come to closure on a
standard prior to the completion of the 1984 CCITT study period, the committee collapsed
under pressure and, “in the spirit of compromise,” adopted a combination (not quite the
union) of the services of the documents under consideration. At the service level, this was a
sizable enough pill to swallow; the ramifications to the protocol (of course, everyone insist-
ed on perpetuating their own bits as well) were nearly ruinous.

THE PRESENTATION AND SESSION LAYERS 277

The parameter identifier (PI) specifies either an individual parameter or
a parameter group. Individual parameters have the following components:

Parameter identifier | A single octet; identifies the parameter
Length indicator A single octet; specifies the length of the parameter in octets
Parameter value The value assigned to the parameter

whereas parameter groups are sets of logically related individual parame-
ters:

Parameter group identifier (PGI)| A single octet; identifies the parameter group

Length indicator (LI)

A single octet; specifies the length of the parameter group in octets

PI,

Identifier of first parameter in group

Ll

Length of first parameter in group

PV,

Value assigned to first parameter in group

Identifier of nth parameter in group

Length of nth parameter in group

Value assigned to nth parameter in group

Octet No. CN SPDU

0 SI=13
1 LI =723
2 PGI=1
3 LI=138
4 PI=10
5 LI=64
6—69 <Value>
70 PI=11
71 LI=64
72-135 <Value>
136 PI=12
137 LI=4
138-141 <Value>
142 PGI =5

This encoding style is decidedly complex; the composition of the
sample session connect packet (CN SPDU) in Figure 11.11 illustrates how
quickly the protocol header becomes littered with “nested” parameter
identifiers and length indicators (LI).

Meaning/Significance ACSPDU Octet No.
SPDU identifier for connect SPDU SI=13 0
Total length of SPDU (does not include the SI or LI) LI=726 1
Connection identifiers parameter group identifier PGI=1 2
Length of connection identifiers parameter group LI=138 3
Calling (CN) or called (AC) SS user reference PI=9 4
Length of SS user reference (0 < 1 < 64 octets) LI=64 5
<Value> 6-69
Common reference parameter PI=11 70
Length of common reference (here, 64 octets) LI=64 71
<Value> 72-135
Additional reference information parameter PI=12 136
Length of additional reference information LI=4 137
<Value> | 138-141
Parameter group identifier for connect/accept item PGI=5 142

278

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

143
144
145
146
147

148
149-152
153
154
155
156
157
158-163
164
165
166

167
168
169-170

171
172
173-188
189
190
191-206
207
208-210
211-722

LI=64 Length of connect/accept item parameter group LI =64 143
PI=19 Protocol options parameter PI=19 144
LI=1 Length of protocol options parameter LI=1 145
<Value> Ability to receive extended concatenated SPDUs <Value> 146
PI=21 Transport service data unit (TSDU) maximum- PI=21 147
size parameter
L1=4 Length of TSDU maximum-size parameter LI=4 148
<Value> Maximum size of TSDUs (for both directions) <Value> | 149-152
PI=22 Version number PI=22 153
LI=1 Length of version number LI=1 154
<Value> <Value> 155
PI=23 Initial serial number parameter PI=23 156
LI=6 Length of initial serial number parameter LI=6 157
<Value> A BCD-encoded value between 0 and 999,999 <Value> | 158-163
PI=26 Token-setting item parameter PI=26 164
LI=1 Length of token-setting item LI=1 165
<Value> Four “bit pairs” representing initial holder of token | <Value> 166
n/a Token item parameter PI=16 167
n/a Length of token item LI=1 168
n/a Indication of which tokens are requested by caller <Value> 169
PI=20 Session user requirements parameter PI=20 170
LI=2 Length of session user requirements parameter LI=2 171
<Value> Each bit represents a session functional <Value> | 172-173
unit requested by SS user
PI=51 Calling session selector parameter PI=51 174
LI=16 Calling session selector length (0 < 1 < 16 octets) LI=16 175
<Value> <Value> | 176-191
PI=52 Called (responding) session selector parameter PI=52 192
LI=16 Session selector length (0 < 2 < 16 octets) LI=16 193
<Value> <Value> | 194-209
PI =193 User data parameter PI =193 210
LI=512" Length of user data parameter LI=512 211-213
<Value> User data—contains CP PPDU, AARE APDU <Value> 214-725

*

When the length indicator value is less than 256, a single octet is used; when the value is greater than 256, 3 octets

are used, with the first octet set to binary 1s to indicate that the following 2 octets contain a length between 0 and 65,535.

FIGURE 11.11

Encoding of CN and AC SPDUs

If readers see a potential “chicken and egg” situation regarding the
negotiation of maximum transport service data unit size in session con-
nection establishment here, they are to be commended. A maximum of
32 octets of transport user data may be transferred via the T-CONNECT
primitives (see Chapter 12); it is thus necessary to first establish a trans-
port connection before the session connect packet can be sent. Now,
although the maximum length of transport user data that may be trans-
ferred over a transport connection is theoretically unbounded, it’s gener-
ally a good idea to negotiate the largest possible transport data unit size

THE PRESENTATION AND SESSION LAYERS 279

during transport connection establishment to minimize fragmenta-
tion/reassembly, and it would be convenient indeed if the session layer
would notify the transport layer of the maximum TSDU size when it
requests a transport connection. Unfortunately, the primitives of the T-
CONNECT service don't offer a maximum TSDU size parameter, so idi-
cation of this useful bit of information is a local implementation matter.”

A Word about Concatenation Another truly confusing aspect of the
session protocol is the notion of concatenation of session packets (SPDUs)
into TSDUs. SPDUs are categorized into three groups:

1. Category-0 SPDUs (give and please tokens SPDUs) are treated as
responsible adults; they may be mapped one-to-one onto a TSDU
or concatenated with another (category-2) SPDU.

2. Category-1 SPDUs (connect, accept, refuse, finish, disconnect, not
finished, give tokens ack, give tokens confirm, exception data,
typed data, abort, and prepare SPDUs) are treated as outcasts and
must be mapped one-to-one onto TSDUs.

3. Category-2 SPDUs (data transfer, the major/minor/resynchronize,
activity, capability, and exception SPDUs) are treated as small chil-
dren and must be “accompanied by an adult,” or category-0 SPDU.

A category-0 SPDU is always the first session packet in a transport
service data unit. If basic concatenation is used, a second session packet
may be appended to the first if it comes from the set of category-2
SPDUs, and if extended concatenation is used, you can piggyback multiple
category-2 SPDUs. Here, the rules are so complicated that the session
protocol doesn’t even attempt to describe them in text; it merely pro-
vides a table. Basically, follow these precedence rules: activity manage-
ment packets precede major/minor synchronization packets, which pre-
cede data transfer packets.

Data Transfer Normal data transfer packets always accompany (at
least) a give or please tokens packet. An example of the simplest form of
encapsulation is provided in Figure 11.12.

Of course, if a session protocol implementation is accomplished, it
will be able to parse and process SPDUs concatenated in TSDUs as com-
plex as those illustrated in Figure 11.13.

As a final example, Figure 11.14 illustrates a simple sequence of

7. ISO standards internationally leave out implementation details. This is so orthogo-
nal to the way Internet Requests for Comments are written that one astonished Internetter
suggested, “The sum of what falls under ‘local implementation matter” in ISO standards
could fill an ocean.”

280

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Octet No.

NGO -

7
8,9
10
11
12-2,011

SPDUs in TSDU Meaning/Significance
SI=1 Give tokens SPDU identifier
LI=3 Total length of give tokens parameters
PI=16 Token item parameter identifier
LI=1 Length of token item
<Value> Indicates which tokens are being given by sending SS user
SI=1 Data-transfer (DT) SPDU identifier
LI =255 Indicates that next 2 octets contain “the real LI”
LI =2,001 Length of the DT SPDU
PI=25 Enclosure item parameter identifier
<Value octet 1> Indicates that this is the beginning /middle/end of SPDU
<Value octets 2-2,001>, User information

FIGURE 11.12 Encapsulation of SPDUs—Simplest Form

session primitives and packets for a session connection in which the
activity management, major synchronization, and minor synchronization
functional units are used in a half-duplex mode of operation; expedited
data transfer is not available, and the exception services were selected
but not required. In the example, the requester is assigned all the
tokens—major / activity, synchronize-minor, release, data—at connection-
establishment time. Also, for illustrative purposes, both confirmed and
unconfirmed minor synchronization are shown.

In this example, an activity composed of two dialogue units was
transferred from the requester to the accepter. Although quite simple, the
exchange represents the way the session service might be used by the
OSI Message Handling System to transfer a single mailgram from one
mail server to another.

AB A Rose (1990) calls attention to many of the flaws and weaknesses
of the session protocol. His criticism is scathing and complete,
and there is little need here to beat a dead horse. To Marshall’s credit, however,
he didn’t just sit on his hands and poke fun; he put together a complete imple-
mentation of the session layer in the ISODE, which is probably the most widely
used upper-layers implementation in deployment today. Some OSI folks view
Marshall as an enemy of the state; considering how much the availability of the
ISODE has contributed to OSI deployment today, they might consider looking
past the bluster and hype and appreciate all the good his OSI implementation
has done.

Final word on the session protocol: it’s ugly, but then, so are the UNIX
awk command, the Report Program Generator Language (RPG), and dozens of

THE PRESENTATION AND SESSION LAYERS 281

| Givetokens SPDU | Activity-startSPDU | Majorsynch SPDU |

| GivetokensSPDU | Activity-startSPDU | Minorsynch SPDU | Data-tranfer SPDU

FIGURE 11.13 Example of SPDUs Concatenated in TSDUs

other technologies. The only thing that matters is whether it helps people do use-
ful work . . .

Putting It All Together

When OSI is presented in a “layer-by-layer” manner, one is inclined to
conclude that there are lots of connections, perhaps altogether too many!
This perception can be partially attributed to the rigid, formal manner in
which layers are defined: after all, seven separate layers must have seven
separate connections, right? Well, not necessarily so.

The risk of examining OSI one layer at a time is that interdependen-
cies between layers are often obscured. When a “bottom-up” approach to
understanding and interpreting OSI is applied as well—from the physical
layer to the application layer—the problem is exacerbated. A bottom-up
approach begins by showing how the physical layer schlepps electrons
across physical connections and enables carriage of data-link bits through
materials like copper and glass, and proceeds to explain how data-link
connections recover the unfortunate bits that get smashed along the way.
This is followed by explanations of how datagrams are forwarded (tem-
porary respite) or how network connections are set up between comput-
ers. Then, a transport connection is established for reliability. Next, a ses-
sion connection. . . . Soon, you are gently lulled into a rhythm of “another
layer, another connection.”

Above the Internet layer in TCP/IP, there are only two connections
and, with them, two associated “state machines”: an “application” con-
nection and an end-to-end connection (transport). An Internet mail
application (RFC 822/SMTP mail; see Chapter 8)—the UNIX sendmail
command, for example—establishes “mail” connections to other mail
applications to forward, deliver, and receive preformatted mail mes-
sages. In a UNIX environment, sendmail resides in user space; it oper-
ates over TCP connections accessed via the UNIX socket().

In OS], the same two connections exist: an MHS-based mail appli-
cation establishes an association for messaging and runs this over a
transport connection. Although the situation is somewhat obscured by

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

-

S- CONNECT. r equest

Eam—
S- CONNECT. confirm —e— —
S ACTI VI TY- START. r equest —
S DATA request ———
S DATA request ———
S- SYNG- M NOR r equest ———p
S DATA request —— o
S DATA request ——

S- SYNG-M NOR request ——

-+ mZ —

S- SYNC-M NOR. confirm —-—
S DATA request -
S DATA request ———

S- SYNC- MAJOR. r equest ————
S- SYNC- MVAJOR. confi r m —e——
S DATArequest — -
S DATArequest ————
S- SYNC- M NOR request —— -
S DATArequest ———
S DATA request ————————
S ACTI VI TY- END. r equest —
S-ACTIVITY-END. confi rm .g——

S RELEASE. request — g

S-RELEASE. confirm «eg——-—

FIGURE 11.14

sl
Net wor k

Connect SPDU ———
Accept SPDU ————
Acti vi ty-start SPD—pm
Dat a- t r ansf er SPD—»-
Dat a- t r ansf er SPD—mw-
M nor synch poi nt SPDdm
Dat a- t r ansf er SPDJ—
Dat a- t r ansf er SPD—pm»-
M nor synch poi nt SPDgis
M nor synch poi nt SPDUat
Dat a- t r ansf er SPDse——
Dat a- t r ansf er SPD—p
Maj or synch poi nt SPDdms
Maj or synch poi nt SPDU#-
Dat a-t r ansf er SPDU—jmm
Dat a- t r ansf er SPDJ—p-
M nor synch poi nt SPDdme
Dat a- t r ansf er SPD—-
Dat a- t r ansf er SPDU—p»
Acti vi ty- end SPDU——m
Act i vi ty- end ack SPDU—
Fi ni sh SPDU———

D sconnect SPDU ~f———

Sample “Session”

-

S CONNECT. i ndi cat i on

S- CONNECT. r esponse

S ACTIM TY. i ndi cati on

S DATA i ndi cation

S DATA i ndi cati on
S-SYNG M NCR i ndi cati on
S DATA i ndi cati on

S DATA i ndi cati on
S-SYNGC- M NCR i ndi cat i on
S- SYNC- M NOR. r esponse
S DATA i ndi cati on

S-DATA i ndi cati on
S-SYNG-MAJCR i ndi cat i on
S- SYNC- MAJOR. r esponse
S DATA i ndi cati on

S DATA i ndi cation

S SYNC M NCR i ndi cati on
S DATA i ndi cati on

S DATA i ndi cati on

S- ACTIVI TY- END. i ndi cat i on
S- ACTI VI TY- END. r esponse
S RELEASE i ndi cati on

S- RELEASE. r esponse

the formal “layer at a time” presentation, close examination of the inter-
action among the application, presentation, and session service elements

THE PRESENTATION AND SESSION LAYERS 283

reveals that a single connection state rather than three exists for each
end-user application. Association control and presentation connection
protocol control information should be piggybacked on session connect
and accept packets, effectively creating a pseudoheader for upper layer
association management (see Figure 11.15); one software process rather
than several can then be invoked to establish or accept an association.
(Note: A software process is represented graphically in Figure 11.15 by a
round-edged rectangle, itself containing subprocesses or routines simi-
larly represented.) In a UNIX environment, the entire OSI upper layers
can be placed in user space, and end-to-end transport can again be
accessed via the socket().

In the figure, the fictitious command “Connect (x, y, z)” is used to
establish an association between this mail application and another. Once
the association is established, control is returned to the application soft-
ware, which proceeds to send or receive data through some software
process responsible for managing data transfer; here, the fictitious opera-
tors “Send()” and “Recv()” are invoked to exchange messages. (Note that
the association management software process will “sleep” until it is
called upon to terminate the association or handle errors.)

Under the direction of the data transfer manager, a mail message is
transferred as an activity within the association. Session layer “jimmies”®
like major and minor synchronization may be used by the mail applica-
tion if the message is large and recovery from temporary loss of the pre-
sentation connection with minimal retransmission is desirable.
Semantically, the state of the application service elements is tightly cou-
pled to the session connection when services such as these are invoked
(you know the drill: reliable transfer service says, “Do that funky synch
thing” to presentation, which echoes it to session, while MHS waits
patiently for a confirmation before proceeding to the next activity); syn-
tactically, this merely introduces additional bits in the information
streamed across the single end-user connection.

The ISODE (Kille and Robbins 1991) is an example of how one
might implement the OSI upper layers as a set of C libraries consisting of
the “core ASEs,” presentation, and session that are loaded with end-user
application programs such as the OSI Directory, Message Handling
System, and FTAM, which can then be run over TCP or any equivalently
featured end-to-end transport using a transport convergence protocol

8. Jimmies are ant-shaped bits of candy sprinkled over ice cream—i.e., add-ons to an
already tasty treat. Here, the term is used to indicate that extra degrees of control can be
exercised over information exchange by invoking session services.

284

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

_\
" Connect " "Send and r ecei ve’

/
4 é)
g lAssou ation-control pr chdur es Ve X ~
(vi aRCBE, RTSE, or ACSEdirectly) RTSE. ROSE
transfer
] procedur es
Presentation

Present at i onpr ot ocol machi ne,
connect i on- est abl i shrent pr ocedur
[connect i on- est abl i shrent pr ocedu

Dat a-t r ansf er
manager

dat a-transfer
Sessi onpr ot ocol machi ne,] pr ocedur es
r

Sessi ondat a-

transfer
pr ocedur es
_) J

| CN SPDU | CP PPDU |AARE APDU | DT SPDU

Associ at i on mana

T

y
T-connect i onest abl i shment — T- DATA request/ T- DATA i ndi cat i on—
e. g.,socket () e.g.,send(), recv()

FIGURE 11.15 Association Management

such as RFC 1006. (In the Wisconsin ARGO 1.0 and 4.3 BSD RENO UNIX
kernels, an end-to-end OSI transport connection is accessed via sockets as
well, using extensions to this interprocess communication mechanism
that accommodate a “sequenced-packet delivery”; see Chapter 12).

The Future of OSI Upper Layers

Since 1983, experts have claimed that (1) the organization of the OSI
upper layers as described in the OSI reference model is a mess, and (2)
the subsequent reconsideration of the application layer architecture
(described in Chapter 6) yielded a structure that was more promising.
Recently, ISO has extended the application layer structure to allow a sin-
gle control function (CF) to supervise a set of application service ele-
ments, and a revision of the entire upper layer architecture is under con-
sideration, which will essentially allow implementations to slice the
upper layers “vertically” and may ultimately collapse the upper layers
into a single, object-oriented “service layer” (Day 1992).

THE PRESENTATION AND SESSION LAYERS 285

The extended application layer structure (XALS) and revised OSI
upper layer architecture under study in ISO define application service
objects (ASOs) that will contain multiple application service elements,
some of these formed by grouping session functional units into applica-
tion service elements and eliminating the session layer entirely. The
existing presentation layer functionality will be subsumed within a new
association control service element, which will offer an A-DATA service,
and the presentation layer will be removed from the OSI reference model
as well. The extended A2CSE (ASO association control service element)
will then be bolted directly on top of the transport layer.

These changes affect a number of OSI standards, including the ref-
erence model, and they won’t happen overnight. The current
wisdom /optimism is that these moves will resolve some of the frequently
criticized upper layer implementation difficulties. OSI upper layer imple-
mentations are criticized for having considerable overhead. The ISODE
7.0 implementation, for example, binds the entire session service library
to each application process at run time; a possible result of rearchitecting
the upper layer structure might be that future OSI-based
programs/ processes would be smaller, since the new ASOs would have
only a subset of session functional units (basic synchronization and basic
combined subsets rise from the ashes!).

p AH Aj There is, of course, a downside to these proposals; namely, the
tremendous impact they would have on the few daring vendors
that have ventured forth into OSI upper layers product deployment. Since, for
reasons of efficiency already noted, OSI upper layer implementations tend to be
closely coupled with the application service element, reorganization and reimple-
mentation will be painful. Also, eliminating a layer of protocol header will wreak
havoc on interoperability —the original and continuing goal of OSI, remem-
ber? —and require an extensive migration and coexistence plan. The moral?
Prototype and measure, until a truly worthwhile “skinny-stack” approach
emerges that supports a business case for transition from existing OSI upper
layers to the new world.

Conclusion

This chapter concludes the discussion of the OSI upper layers. Having
first examined application services at a conceptual and “features” level
in Chapters 7, 8, and 9 (introducing directories, e-mail, and network
management), the authors then discussed the service elements on which

286

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

distributed applications rely to provide such end services—in particular,
application connection establishment, remote operations, and reliable
transfer. This chapter has demonstrated how certain functions that appli-
cation service elements provide to user elements or “specific” application
service elements—the checkpointing, turn management, and activity man-
agement services that constitute reliable transfer—are performed at the
session layer and how these are accessed via “pass-through” services
provided by the presentation layer. Having completed a layer-by-layer
description of the OSI upper layers, the authors “put it all together” and
discussed how the existence of seven layers is not a mandate for (at least)
seven connections—the interdependencies between the OSI upper layers
may be exploited in prudent implementations, and everything in OSI
“from session and above” can be implemented as a single connection.
The chapter concludes with some insights into how implementation
experience and hindsight may contribute to future refinements in the OSI
upper layer structure.

PART FOUR

mmmssssssm MIDDLE LAYERS

THE TRANSPORT LAYER

The transport layer is the basic end-to-end building block of host networking.
Everything above the transport layer is distributed-application—oriented;
everything below the transport layer is transmission-network—oriented. In
the work on OSI, the upper layers have tended to be the province of people
with a computer systems (particularly operating systems) background; the
lower layers, of people with an electrical engineering (particularly transmis-
sion systems) background. The imperfect alignment of the very different
perspectives of the “computer people” and the “telecommunications peo-
ple” has led to the definition of five different classes of transport protocol in
O8], each one tailored to a particular vision of the way in which hosts are
properly interconnected by networks. The work on TCP/IP, on the other
hand, was carried out by a relatively small group of people who managed
to avoid being identified as “upper layer” or “lower layer” until long after
the fact. This group agreed on a single model for network interconnection
and defined a single transport protocol (TCP).

The OSI reference model explains the purpose of the transport layer
in the following terms:

“To provide transparent transfer of data between session entities and
relieve them from any concern with the detailed way in which reliable and
cost effective transfer of data is achieved.”

“To optimize the use of available network service to provide the perfor-
mance required by each session entity at minimum cost.”

“To provide transmission of an independent, self-contained transport-ser-
vice-data-unit from one transport-service-access-point to another in a sin-
gle service access.” (ISO/IEC 7498: 1993)

In plain-speak, this means that the OSI transport layer provides a

289

290

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

reliable data pipe for the upper layers as part of a connection-oriented
service, and simple datagram delivery as part of a connectionless service.
In the TCP/IP protocol suite, the reliable connection-oriented service is
provided by the transmission control protocol [TCP] and the simple data-
gram service by the user datagram protocol UDP. During connection-ori-
ented operation, the data stream submitted to the transport layer by
transport user A must be delivered to transport user B without loss.
There may be no duplication of any of the octets in the data stream, and
the octets must be delivered in the same order as that in which they were
submitted (end-to-end sequence control). The transport layer must also
provide end-to-end error detection and recovery: the detection of (and
recovery from) errors introduced into the data stream by the network
(data corruption).

In both connection-oriented and connectionless modes, the trans-
port layer must also do what it can to optimize the use of the network’s
resources, given quality of service objectives specified by the transport
users. For example, if a local session entity requests a transport connec-
tion to a remote host, and the transport layer recognizes that a network
connection already exists to that host, and the quality of service objectives
for both the existing and newly requested transport connections can be
satisfied, the local transport entity can decide to multiplex both transport
connections onto a single network connection.

Some applications transfer large amounts of data and don’t want
any of those data lost; they want reliable transport connections. For some
applications, however, loss of individual data elements is either irrelevant
or annoying but not disruptive; and some applications prefer to provide
reliability themselves. For these applications, the reliability provided by
transport connections is redundant, and the connectionless transport ser-
vice is the better choice. The first part of this chapter describes the connec-
tion-oriented transport services and protocols of OSI and TCP/IP in
detail; their connectionless counterparts are described much more briefly
(since they are much simpler) at the end of the chapter.

OSI’s Connection-oriented Transport Service

The OSI transport service definition (ISO/IEC 8072: 1993) identifies the
functions associated with the connection-oriented transport service
(COTS), the transport service primitives and parameters used to define
the service, and the parameters used to define transport quality of service.

THE TRANSPORT LAYER 291

The following end-to-end functions are elements of the connection-

oriented transport service:

Multiplexing of transport connections onto network connections
(and demultiplexing of them at the destination).

Sequence control to preserve the order of transport service data units
submitted to the transport layer.

Segmenting transport service data units into multiple transport pro-
tocol data units (and reassembling of the original transport service
data units at the destination).

Blocking multiple transport service data units into a single transport
protocol data unit (and unblocking it into the original transport ser-
vice data units at the destination).

Concatenating multiple transport protocol data units into a single
network service data unit (NSDU) (and separating it into the indi-
vidual transport protocol data units at the destination).

Error detection to ensure that any difference between the data sub-
mitted to the transport layer at the source and the data that arrive
at the destination is detected.

Error recovery to take appropriate action when errors are discovered
by the “error-detection” function.

Flow control to regulate the amount and pacing of data transferred
between transport entities and between the adjacent session and
transport layers.

Expedited data transfer to permit certain transport service user data
to bypass normal data flow control. (Similar to “urgent data” in
TCP which is examined later in this chapter).

The primitives and parameters of the connection-oriented transport ser-
vice are depicted in Table 12.1.

TCP/IP’s Reliable Stream Service

TCP provides a reliable connection-oriented transport service. REC 793
describes TCP as providing “robustness in spite of unreliable communi-
cations media” and “data transfer that is reliable, ordered, full-duplex,
and flow controlled.” The end-to-end functions of TCP include:

Multiplexing of multiple pairs of processes within upper-layer pro-
tocols.

Sequence control to preserve the order of octets submitted to TCP.
Flow control to regulate the flow of data across the transport connec-
tion.

292 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TABLE 12.1 OSI Transport Service Primitives and Parameters

Primitives Parameters
T-CONNECT request Called address,
indication calling address,

expedited data option,
quality of service,
TS user data
T-CONNECT response Responding address,
confirmation expedited data option,
quality of service,
TS user data

T-DATA request TS user data
indication

T-EXPEDITED-DATA request TS user data
indication

T-DISCONNECT request TS user data
indication TS user data,

disconnect reason

» Push, whereby a sending upper-layer protocol process can force
both sending and receiving TCP processes to deliver data to the
receiving upper-layer protocol process.

» Urgent data, an interrupt data service whereby a sending upper-
layer protocol process may request that data marked “urgent” be
processed quickly by the receiving upper-layer protocol process.

RFC 793 serves as both protocol specification and service definition,
specifying the interaction between upper-layer protocol (ULP) processes
and TCP (Tables 12.2 and 12.3), the format of the transport protocol, and
its operation.

Interfaces to Transport Services

The formal interaction that takes place between a service user and the
service provider for connection establishment, data transfer, expedited
data transfer, and connection release is the same for the transport layer as
it is for the upper layers which have already been discussed. It is perhaps
more interesting to consider how an interface to the transport service

THE TRANSPORT LAYER 293

Socket Interface
for OSI Transport
Service

might be implemented in a representative UNIX implementation, such
as Wisconsin ARGO! 1.0 (Wisconsin ARGO 1.0 Kernel Programmer’s Guide
for Operating Systems 4.3), and 4.3 RENO UNIX (RENO 4.3 UNIX
Operating System).

In ARGO 1.0 UNIX, the OSI upper layers are implemented in user
space—that portion of the UNIX operating system available for applica-
tion programming—making the application service elements accessible
to application developers through library/procedure calls rather than
system calls. OSI’s transport layer is implemented in the UNIX kernel
along with most of OSI’s network layer; some network-layer functions,
and the data link and physical-layer components appropriate for the
transmission technologies supported (e.g., a LAN or serial interface),
reside in network interfaces (see Figure 12.1).

The transport service is implemented as an extension to the UNIX
interprocess communication that supports TCP and UDP. Like TCP and
UDP, OSI transports are accessed via sockets (type sock-seqpacket). The

111

UNI X user space

sl TCP
upper appl i cations

| ayers
/|y
@ @

—— Socket s

03]
transport

TCP
and

| P \
Ker nel

and
net wor k

== Net wor k
i nterfaces

FIGURE121 ARGO 1.0

1. ARGO stands for “A Really Good OSI” implementation.

294

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TABLE 12.2 TCP service primitives (from ULP to TCP)

Request Primitives Parameters

Unspecified Passive Open source port, ULP_timeout, ULP_timeout_action,
precedence, security_range—actually, if IP,
any IP option supported

Fully Specified Passive Open source port, destination port, destination (IP)
address, ULP_timeout, ULP_timeout_action,
precedence, security_range

Active Open source port, destination port, destination (IP)
address, ULP_timeout, ULP_timeout_action,
precedence, security_range

Active Open with data source port, destination port, destination (IP)
address, ULP_timeout, ULP_timeout_action
precedence, security_range, data, data length,

PUSH flag, URGENT flag

Send local connection name, data, data length , PUSH
flag, URGENT flag, ULP_timeout, ULP_time-
out_action

Allocate local connection name, data length

Close local connection name—graceful

Abort local connection name—disruptive

Status local connection name

transport service primitives and parameters are mapped onto a set of
UNIX system calls (see Table 12.4).

Greatly abbreviated, the process of establishing a transport connec-
tion in ARGO 1.0 is as follows. The UNIX system call socket() creates a
communication endpoint. The parameters of the socket() system call used
to establish an OSI transport connection include the address format (AF-
ISO), type (sock-seqpacket), and protocol identifier (ISO TP). The UNIX
system call bind() is used to assign an address to a socket. This now
addressable endpoint can be used to initiate or listen for an incoming
transport connection.

A transport user—a session entity or an application that runs di-
rectly over the transport service, in user space—initiates a transport con-
nection by issuing the connect() system call to another transport user. If
the called transport user is also located on a UNIX machine running
ARGO 1.0, it must have already issued a socket() system call (to create its
own communication endpoint) and bind() to assign an address to the

THE TRANSPORT LAYER 295

TABLE 12.3 TCP Service Primitives (from TCP to ULP)

Request Primitives

Parameters

Open Id

Open failure
Open success

Deliver
Closing
Terminate

Status response

Error

local connection name, source port, destination

port, destination (IP)
address

local connection name

local connection name—completion of one of the open
requests

local connection name, data, data length, URGENT
flag—data have arrived across the named connection

local connection name—remote ULP issued close, TCP
has delivered all outstanding data

local connection name—indication of remote reset,
service failure, or connection closing by local ULP

local connection name, source port, source (IP) address,
destination port, destination (IP) address, connection
state, amount of data local TCP willing to accept,
amount of data allowed to send, amount of data
waiting acknowledgment, amount of data pending
receipt by local ULP, urgent state, precedence,
security, ULP_timeout

local connection name, error description—indication that

TABLE 12.4 Mapping of Transport Service Primitives to UNIX System Calls

TS Primitives UNIX System Calls
T-CONNECT request socket(), bind(), connect(), setsockopt()
indication Return from accept(), getsockopt(),
following socket(), bind(), listen()
response (No applicable system calls)
confirmation Return from connect()
T-DATA request recv(), sendv(), (new calls)
indication Return from recv(), sendv(), select()
T-EXPEDITED-DATA request sendv() with MSG_OOB flag set
indication SIGURG, getsockopt() with
TPFLAG-XPD, return from select()
T-DISCONNECT request close(), setsockopt()

indication SIGURG, error return, getsockopt()

296

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

socket. The transport service user on the called machine must have also
initiated a listen() system call to passively await an incoming transport
connection request. When a request arrives, the called transport user uses
the accept() system call to accept or reject the request. The time-sequence
diagram in Figure 12.2 illustrates the flow of UNIX calls and the trans-
port connection-establishment primitives implied by the calls. (It is safe
to assume that the relevant parameters of the transport service primitives
are conveyed in the UNIX system calls. Both ARGO 1.0 and RENO 4.3
UNIX use new system calls—sendv() and recvv()—for data transfer (these
correspond to the T-DATA.request and T-DATA.indication, re-spective-
ly). These are scatter-gather or “vectored data” system calls: an array of
pointers and lengths describe areas from (or to) which data will be gath-
ered (or scattered). An indication of the end of a transport service data
unit is provided using the flags parameter, which allows processing of a

L\ o2 L\
[net wor k o
UN XMachi ne* A UN XMachi ne' B
socket () socket ()
bi nd() bi nd()
connect () listen()

(equal s T- OCONNECT. r equest)

accept ()
(‘equal sT- OCONNECT. i ndi cat i on)

neexpl i ci t
T- CONNECT. r esponse

- |

mZ — -

L —

returnfromconnect ()
(equal s T- GCONNECT. conf i r mat i on)

sendv()
(equal sT- DATA request)

\ >
T~

cl ose() recvv()
(equal s T- DI SOONNECT. r equest) (equal sT- DATA i ndi cat i on)

\\

urgent si gnal (Sl GURG onsocket
(equal sT- DI SCONNECT. i ndi cat i on)

Y

FIGURE 122 Transport Connection Establishment in ARGO 1.0

THE TRANSPORT LAYER 297

The X/OPEN
Transport
Interface

transport service data unit to span multiple system calls. A sending user
process distinguishes transport expedited data from normal data by set-
ting the MSG_OOB flag in the sendv() call; the receiver is notified of the
arrival of expedited data via a UNIX signal mechanism (SIGURG, inter-
preted as an “urgent condition on the socket”). User processes initiate
transport connection release using the close() system call. An application
process is notified of a peer transport user (or transport provider) initiat-
ed release via an urgent condition on the socket (or via an error return on
other primitives), whereupon the socket is closed.

Like sockets, the X/OPEN Transport Interface (XTI) offers a program-
matic interface to OSI transport protocols. Specifically, the X/OPEN
Transport Interface allows transport users (user processes) to request
transport classes 0, 2, and 4 over network connections and transport class
4 over network datagrams. The X/OPEN Transport Interface supports
transport protocol class selection, expedited data, quality of service,
orderly release, and variable-length transport addresses and supports
both synchronous and asynchronous communication. With synchronous
communication, the calling transport user attempts to connect and waits
for an accept; similarly, a called transport user will wait and listen for an
incoming transport connection (passive). With asynchronous communica-
tion, the calling transport user attempts to connect and goes off to do
other things until notified that the transport connection has been accept-
ed (active); a transport user awaiting an incoming transport connection
may listen as a background activity and attend to other operations.

Synchronous communication is the default mode of communica-
tion for the t_connect() system call. The transport connection-establish-
ment process is similar to the UNIX socket interface: a transport user cre-
ates a transport endpoint using the t_open() system call, then binds a
transport address to the endpoint using the t_bind() system call. An
active open is invoked via the t_connect() system call, followed by a call
to poll() with time-out value to await confirmation. A passive open is
invoked via the _listen() system call. All active processes must create a
listening endpoint; a separate responding endpoint is created for each
transport connection. A listening transport user accepts an incoming
transport connection by invoking the t_accept() system call; to reject an
incoming transport connection, a listening transport user returns a t_snd-
dis() system call rather than the ¢_accept().

If the transport connection is accepted, the transport users
exchange data using the t_snd() and t_rcv() system calls. In the synchro-
nous mode, a sending transport user waits if flow is constrained; in the

298

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

asynchronous mode, explicit flow restrictions are signaled via [TFLOW]
errors, a flow-control constraint error signaled in the t_snd() call return. If
expedited data are to be sent, a flag (T-EXPEDITED) is set in the t_snd()
call request. The f_rcv() system calls are used to receive partial or com-
plete TSDUs; if a partial TSDU is received, a flag (T-MORE) is set, reflect-
ing the arrival of an end of TSDU indication in the transport protocol. If
expedited data are to be received, a flag (T-EXPEDITED) is set among the
t_rcv() system call parameters.

The transport connection is released upon completion of a t_snddis()
and t_rcudis() system call sequence. Figure 12.3 illustrates the entire
sequence of events associated with a transport connection in which a sin-
gle transfer of data is performed.

For asynchronous communication, transport users create endpoints
but set the O_NONBLOCK flag in the t_open() system call. Again, both
the calling and called transport users bind a transport address to the end-
point using the ¢ bind() system call. The calling user process (transport
user) invokes the t_connect() system call, which returns immediately. The
calling process may perform other operations while the transport connec-
tion-establishment process proceeds.

The listening or passive user process calls:

« poll() with a time-out value to await an incoming event

i
"

System A System B
t_gpegg)) t_open()
t I N - . .
t_connect (\ t_bi nd(} |'i st eni ng
—_—
t_listen
T bEﬁg(p)en() } respondi ng
| t _accept (
M
-
E -
returnfromt_connect ()
t_snd()
—_— -
t_snddi s() trev()
—_— —» t_rcvdis()
t_unbi nd() t_unbind() /* respondi ng*
t_cl ose() t_unbind() /*1istening*/
t_close() /*responding:

t_close() /*listening*/

FIGURE 12.3 XTI: Synchronous Communication

THE TRANSPORT LAYER 299

 t_look() to obtain details about incoming events (in this case, an
incoming transport connect request indication)

« t_listen() to obtain the information that describes the incoming
transport connection request

e t_accept() to notify the calling transport user that the connection will
be accepted

The calling transport user, periodically calling poll(), learns of an
incoming event, then calls ¢ look() to check whether the event is a confir-
mation of the transport connection request it has made. The calling trans-
port user determines the results of transport connection negotiation
(described later in this chapter) from the information returned in the
t_rcvconnect() system call.

The only “twist” on sending and receiving data in asynchronous
mode is that user processes must poll() for incoming events, then ¢_look()
to determine that a particular event is incoming data prior to performing
the t_rco() system call. The same twist applies for connection release: a
“release event” is returned through t_look(). Figure 12.4 illustrates the
entire sequence of events associated with asynchronous communication.

System A System B

t_open() t_open()
t_bi nd() t_bi nd()
t_connect (\
—_— pol 1 ()
Tt ook()
t_listen()
T pal1 ()
| t_| ook() t-accept
M t _rcvconnect () < -—
E /
t_snd() 0o
pol
\ S t_I ook()
pol 1 () t_rev()
t_l ook()
t_rev() 0
- [- t_sn
t_snddis(4+
T »
\ pol 1 ()
t_I ook()
t_revdis()
t _unbi nd() t _unbi nd()
t_cl ose() t_cl ose()

FIGURE 124 XTI Asynchronous Communication

300

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Transport Addressing

In the set of UNIX system calls used to establish interprocess communi-
cation between TCP/IP applicatons, a set of Internet port numbers is used
to differentiate users of the stream and datagram services provided by
the transport layers. There are, for example, well-known or “assigned”
numbers for the Internet standard applications servers (e.g., FTP, SMTP,
SNMP, TELNET). For OSI-based interprocess communication in UNIX,
ARGO 1.0 uses a separate address space, transport service access point iden-
tifiers,? to name the interface between the transport service users and the
transport entities in the kernel. Like ports, transport service access point
identifiers are a particularly important set of names, since they are often
visible to program interfaces such as the UNIX socket.

The parameters of the socket() system call used to establish an OSI
transport connection include the address family/format (AF-ISO), type
(sock-seqpacket), and protocol identifier (ISO TP). The transport service
access point identifier assigned to a socket using the bind() system call
usually takes the following form:

struct sockaddr_iso {

short siso fanily; /* address famly is iso */
u_short siso_tsuffix; /* the TSAP identifier */
struct iso_addr siso addr; /* the NSAP address */

char siso_zero[2]; /* unused */

}

The transport service access point address is represented as the con-
catenation of the network service access point address and a transport
selector. The C programming-language data structure and the data struc-
ture used to assign an Internet port/address when establishing a socket
(type stream) are very similar; e.g.:

struct sockaddr_in {

short sin_fanily; /* address famly is internet */
u_short sin_port; /* the internet port */

struct in_addr sin_addr; /* the |P address, a.b.c.d */
char sin_zero[8]; /* unused */

}

In TCP/IP, ports identify upper-level protocol entities or processes,

2. The full address of a transport service access point consists of a network service
access point address and a transport service access point identifier. The term “transport ser-
vice access point address” refers to this full address; where only the identifier part (some-
times called a “transport selector”) is meant, the term “transport service access point identi-
fier” or simply “transport identifier” will be used.

THE TRANSPORT LAYER 301

A Comparison of
Internet Ports
and OSI TSAPAs

and pairs of endpoints identify TCP connections. Specifically, the pair {IP
address, port number} roughly corresponds to the OSI transport service
access point address, which is the pair {network service access point
address, transport selector}, and two of these {IP address, port number}
pairs uniquely identify a TCP connection. Internet port number assign-
ment follows a client/server paradigm. A server process binds to a well-
known port number and listens at {server-IP-address, well known-tcp-
port} for connection requests from any source; i.e., from {any-IP-address,
any-port}. A client process binds to {client-tcp-port, client-IP-address},
where client-tcp-port is dynamically allocated from unused ports on the
client’s system. When a client process initially connects to a server
process, the endpoints of the transport connection are {client-IP-address,
client-tcp-port} and {server-IP-address, well known-tcp-port}, but when
the server accepts an incoming request, it creates a second socket and
binds the incoming call to this new socket; the resulting endpoints of the
transport connection are {client-IP-address, client-tcp-port} and {server-
IP-address, server-tcp-port}. Once the server process has mapped the
transport connection onto this new pair of endpoints, it continues to lis-
ten at {server-IP-address, server-tcp-port} for requests from any source;
i.e., from {any-IP-address, any-port}.

Internet port numbers are always 16 bits. OSI allows for variable-length
transport service access point identifiers, up to a maximum length of 64
octets. ARGO 1.0 accommodates the assignment of extended transport
identifiers through the use of the getsockopt() or setsockopt() system calls
following the call to bind(). Another difference between OSI transport
service access point identifiers and Internet port numbers is that, gener-
ally speaking, a set of Internet port numbers are globally and uniquely
assigned to represent a well-known application; transport service access
point identifiers are frequently derived from the presentation address
attribute of an application entity title (see Chapters 5, 7, and 11).

Five Classes of OSI Transport Protocol

The Connection Oriented Transport Protocol Specification (ISO/IEC 8073:
1986) defines five classes of procedures for the connection-oriented OSI
transport protocol. The transmission control protocol (TCP), on the other
hand, has no concept of “class”; it simply defines one standard way in
which to provide a connection-oriented transport service.

The answer to the question “why five classes of transport protocol

302

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Class 0: The
Simple Class

in OSI?” lies not in the transport layer but in the network layer. If one’s
model of the world has end-user equipment (hosts) attached to specific
individual networks, then one is likely to design a separate transport
protocol for each individual network, optimized for the particular char-
acteristics of that network. If one’s model of the world has end-user
equipment attached to a global internet, consisting of an arbitrary num-
ber of interconnected individual networks, then one is likely to design a
single transport protocol that provides an end-to-end service with
respect to the internet as a whole and makes few (if any) assumptions
about the characteristics of individual networks (which, as part of the
internet, are not individually visible to the transport protocol). Each of
the OSI transport protocol classes 0 through 3 is intended to be used with
a particular type of connection-oriented network, according to the proba-
bility of signaled and unsignaled errors on that network. Class 4, like
TCP, is intended to be used in internets and is not defined with respect to
any particular network type.

Class 0 is designed to have “minimum functionality.” It provides only
the functions necessary to establish a transport connection, transfer data
(well, it can segment transport service data units), and report protocol
errors. Class 0 relies on the underlying network connection to provide all
of the end-to-end capabilities of the transport layer, including sequenc-
ing, flow control, and error detection. It was designed with the expecta-
tion that the underlying network connection would provide a virtually
error-free data-transfer service; for example, in those subnetworks in
which a protocol such as CCITT X.25-1984 is used. Class 0 does not pro-
vide multiplexing capabilities, and it is so resolutely simple that it does
not even have its own disconnection procedures: when the underlying
network connection goes away, transport class 0 goes with it.

AH A Class 0 adds no value whatsoever to the underlying network
service, which is just the way some network service providers
like it. (“Our network service is absolutely splendid. How could you end users
possibly imagine that any further work is necessary on your part to obtain a reli-
able end-to-end connection?”) Class 0 is equivalent to the transport protocol
defined for the CCITT Teletex service; it persists because it has been written into
the CCITT X.400-series recommendations for message handling systems as the
required protocol class for connection to public network messaging systems.>

3. The CCITT X-series recommendations differ from ISO standards in that each service
definition identifies precisely the protocol that must be used to provide the service; e.g., the

THE TRANSPORT LAYER 303

Class 1: The Basic
Error Recovery
Class

Class 0 does have one redeeming feature: it is used to create an OSI
transport service on TCP/IP networks, enabling OSI applications to run
over TP/IP. REC 1006, ISO Transport Services on Top of the TCP, specifies a
widely used convention for operating OSI applications over TCP/IP net-
works. TCP, complemented by a simple 4-octet packetization protocol,
provides the essence of the connection-oriented OSI network service
across TCP/IP networks (in fact, it does so better than the OSI connec-
tion-oriented network protocol, X.25), and OSI transport protocol class 0
provides two service features—the transfer of transport addresses and
transport service data unit delimiting—to complete the OSI transport
service.

Transport class 1 is a small improvement over class 0, providing error re-
covery following a failure signaled by the network service, expedited
data, and an explicit transport connection release (distinct from network
connection release). Class 1 could almost be called “the apologist’s trans-
port protocol.” It recognizes that no connection-oriented network in the
real world is truly perfect. Where class 0 says, “Trust me, the network will
never do anything bad,” class 1 says, “The network will never do any-
thing bad without telling me about it, and if it does, I'll take care of it.”
Several error recovery procedures are included in class 1:

 Retention until acknowledgment: Following a signaled failure, copies
of outstanding transport protocol data units are retained until
receipt of an indication that the remote transport entity is alive, at
which time resynchronization procedures are invoked.

o Reassignment after failure: If the underlying network connection sig-
nals a Disconnect, class 1 can map the existing transport connection
onto a new network connection.

* Resynchronization: Following a recoverable failure signaled by the
network connection (e.g., a reset; see Chapter 13) or a reassignment
after failure, both transport entities retransmit unacknowledged
transport protocol data units and resynchronize the data stream.

Class 1 can recover only from errors explicitly signaled by the net-
work service provider. Errors not detected and reported by the network
service provider will also go undetected by the transport protocol.

CCITT Recommendation T.70 for teletex terminals must be used to provide the OSI trans-
port service when connecting to a public MHS. ISO service-definition standards describe
only the features of a service, implying that a number of protocols might be used to pro-
vide that service.

304

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Class 2: The
Multiplexing
Class

The experts who introduced class 0 were quite pleased about having iden-
tified a minimally functional, low-overhead transport protocol until they
realized that they had failed to consider one very important aspect of sub-
scriber access to an X.25 public data network: for economy, subscribers
often multiplex data streams from more than one piece of data terminal
equipment over a single network connection provided by an X.25 network
to maximize use of the throughput available over that network connection.
The most obvious way to correct this oversight would have been to extend
the functionality of class 0. Class 0 “protectionists,” while acknowledging
that multiplexing was useful, argued for stability and consistency between
the ISO transport protocol standard and CCITT Recommendation T.70, the
transport protocol for teletex terminals. (It should also be noted that the
folks who work for carrier networks were not as keenly interested in mul-
tiplexing as were end users.) Thus was born Class 2.

The following functions are present in class 2:

» Reference numbers enable two communicating transport entities to
distinguish the transport protocol data units associated with one
transport connection from those associated with a different trans-
port connection.

 Explicit flow control, when selected, allows the transport entities to
regulate the amount and pacing of data transferred between them.

 Expedited data transfer permits the transmission of up to 16 octets of
user data that are not subject to normal flow-control procedures.

« Extended transport protocol data unit numbering, when selected, allows
transport entities to use a larger sequence number space (31-bit,
rather than the normal 7-bit) for transport protocol data unit num-
bering and acknowledgments. This increases the number of trans-
port protocol data units that a sender can transmit (the “send win-
dow”) before it must wait for explicit acknowledgment of reception
by the receiver. Normally, the use of a larger window increases
throughput. Increasing the size of the sequence number space is also
necessary to eliminate the possibility of sequence numbers “wrap-
ping”; for example, if the sequence space were {1 ... 10}, and a win-
dow of 15 were allowed, a sender could transmit packets in se-
quence {1...10, 1, 2, 3, 4, 5}. Receiving this sequence of packets, the
receiver would be unable to determine whether the second transport
protocol data unit received containing the sequence number 1 was a
duplicate of a transport protocol data unit received earlier with
sequence number 1 or a new transport protocol data unit with the
same “wrapped” sequence number.

THE TRANSPORT LAYER 305

Class 3: The Error
Recovery and
Multiplexing
Class

Class 4: The
Error-Detection
and Recovery
Class

Curiously, class 2 adds only those functions necessary to support
multiplexing; in particular, the error-detection capabilities of class 1 are
missing from class 2.4

When the work on OSI transport-layer standards began in the late 1970s,
most of the people involved approached the job with a particular type of
network in mind—an X.25 packet-switching network, for example, or an
X.21 circuit-switching network—each of which suggested different
design criteria for a corresponding transport protocol. Lacking the inter-
networking perspective of the people who designed TCP/IP, the ISO
experts proceeded to deal with each of the available network services on
a case-by-case basis, accommodating differences in reliability and fea-
tures not by designing a single, highly resilient, and competent transport
protocol but by introducing one after another.

So it came to pass that yet another group of experts studied the
existing set of transport protocols and—feeling either remorse, concern,
or both—decided that at least one transport protocol should combine all
of the features of the existing transport protocols. Class 3 represents the
union of the functions and capabilities of classes 0 through 2 and then
some; the transport protocol standard describes class 3 as having “. . . the
characteristics of Class 2 plus the ability to recover from network discon-
nect or reset.” Specifically, transport protocol class 3 provides the multi-
plexing functions of class 2 plus the error recovery functions of class 1.

Implicit in the design of the first four OSI transport protocol classes is the
assumption that any errors that might occur in the transfer of data across
a network connection will be detected by the network service provider
and signaled to the transport entities. Prior to the introduction of class 4,
transport protocol design was based on a “network-centric” view of the
world: like the dial tone in the telephone system, the OSI network service
would in all configurations be provided by one or more common carri-
ers, and service uniformity and homogeneity would be the rule rather
than the exception. Further, compelling political and economic argu-
ments existed that made perpetuating the notion that the bulk of end-to-
end functionality could be provided at the network layer a standards
imperative.

4. Many implementers who are initially appalled by the fact that there are five distinct
classes of transport protocol in OSI comfort themselves with the assumption that at least
they will be able to implement them by incrementally adding functions to lower classes to
create successively higher ones. They are truly aghast when they discover that this is not
the case.

306

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Technically speaking, the “network is everything” school of thought
views the service provided from network entry to network exit as having
end-to-end significance. In implementation and practice, however, the net-
working protocols and interworking among those protocols in fact pro-
vide only edge-to-edge significance. As will be seen in Chapter 13, the pro-
vision of network services, like all human endeavor, is fallible, and vari-
ability exists. This is particularly true when multiple providers and
diverse technologies are involved in the process. Humans tolerate vari-
ability in the voice network because they intuitively apply error-detec-
tion and recovery mechanisms; computers lack intuition, so the protocols
they use to transfer data must be designed to recognize a variety of fail-
ures and recover from them. Until the introduction of transport protocol
class 4 (generally referred to as “TP4”), many of the necessary reliability
functions were absent.

Several years prior to the OSI transport standardization effort,
research in the United States questioned the premise that reliability could
be assured by establishing uniformity across all networking services.
Practical experience gained in the implementation and use of research
networks such as the U.S. Department of Defense Advanced Research
Projects Agency (DARPA) Internet Research Project (RFC 791), the
Livermore Interactive Network Communication System (LINCS; Watson
1982), and the Ethernet-oriented architecture developed at the Xerox Palo
Alto Research Center (Xerox Corporation 1981) demonstrated the bene-
fits of incorporating all end-to-end reliability functions into a single pro-
tocol that operated in host computers (end systems) and relying on the
network to perform only the functions essential to the forwarding and
delivery of information from source to destination. Since the transport
layer takes nothing for granted in this model, the variability of service
quality among interconnected networks becomes a non-issue. An entirely
different axiom was espoused: “Sadly, it is a fact of networking life that bits
get smashed, octets and packets arrive out of order, some arrive twice, and some
do not arrive at all.” Host protocols must therefore be prepared to deal
with these problems. From this “host-centric” school of thought, trans-
port protocols such as TCP and OSI transport protocol class 4 emerged.

The OSI transport protocol standard describes class 4 as having “. . .
the functionality of class 3 plus the ability to detect and recover from lost,
duplicated, or out of sequence transport protocol data units.” This is
somewhat misleading, since the mechanisms to provide reliability in
class 4 differ substantially from those in class 3. It is more accurate to say
that transport protocol class 4 provides the multiplexing functions of
class 2 and explicit flow control, plus error detection and error recovery

THE TRANSPORT LAYER 307

How Do You
Choose the Right
One?

based on the “positive acknowledgment and retransmission” paradigm
of TCP. The functions of TP4 include those of class 2 plus:

A checksum computed on the transport header and user data. A 16-
bit arithmetic checksum based on Fletcher (1982) is computed to
detect bit-level errors in the data stream.

* Resequencing, which enables a receiver to determine when transport
protocol data units have arrived out of order and provides a means
of correctly ordering the octet stream before passing it up to the
transport service user.

o Inactivity control, which enables a transport connection to survive
the (temporary) unsignaled loss of network layer connectivity.

« Splitting and recombining, which enable a transport connection to
transfer data simultaneously over multiple network connections to
increase throughput or provide resiliency from single network con-
nection failure.

o Detection and recovery of lost and duplicate transport protocol data
units.

TP4 is genetically closer to TCP, Xerox’s RTP, and their proprietary
networking relatives (e.g., the reliable transports in Digital Equipment
Corporation’s DECnet and Burroughs Network Architecture) than the
“Tinkertoy” classes that do not provide an actual end-to-end transport ser-
vice. Later in this chapter we will demonstrate just how similar TCP and
TP4 are.

Having five transport protocols to choose from is clearly a problem for
both implementers and users. The way in which the OSI standard de-
scribes how to choose which of the transport protocols to use in a given
configuration only adds to the confusion. So how do you choose one? The
transport protocol standard recommends that a transport protocol class be
chosen to support a given transport connection based on the type of net-
work connection available at the time of connection establishment and the
quality of service requested by the transport service user. Since no meaning-
ful guidelines for the specification or interpretation of quality of service
parameters have ever been produced for OSI, class selection relies almost
entirely on the underlying network type. The standard identifies three
types of network connection:

1. Type A: a network connection with an acceptable residual error rate
and an acceptable rate of signaled errors.

2. Type B: a network connection with an acceptable residual error rate
but an unacceptable rate of signaled errors.

308

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

3. Type C: a network connection with an unacceptable residual error
rate.®

This, of course, begs the question of how the service quality of net-
work connections can be known in advance. Good question, and also one
left unanswered by the standard. Like Pilate, the transport protocol stan-
dard washes its hands of the responsibility, saying only that “It is
assumed that each transport entity is aware of the quality of service pro-
vided by particular network connections” An immediate reaction by
any right-thinking individual is that this is a joke. It is impossible to
imagine how any individual host could know a priori the type and char-
acteristics of all the network connections that might be available to con-
nect to all the host machines in a small, private network, much less a
global OSI network! The transport standard’s assumption of this nature
belies the notion of typing altogether, since it is meaningful only if ser-
vice uniformity is assumed across every possible set of interconnected
networks. (Such uniformity cannot be guaranteed even in the global
voice network, which is far more homogenous than any conceivable
global data network.)

SAH A In. fact, the fyping of netz'uork connection.s was merely a conve-
nient premise for the existence of multiple transport protocol
classes, which served a different purpose altogether. The political realities of the
time demanded that each of several existing public network services be character-
ized within OSI as having at least the potential to be the cornerstone of the per-
vasive worldwide network, connecting all hosts everywhere. Each of these must,
perforce, have its own specially optimized transport protocol. But since compro-
mise and consensus are supposed to be the essence of standardization, it would
hardly do to have several separate incompatible standards. The solution was to
talk not about specific existing networks but about “types” of networks, with
which different “classes” of a single protocol standard could be associated.
Achieving this “compromise” made some of the standards developers very
happy, while creating a legacy of confusion and incompatibility for OSI imple-
menters and users. Thankfully, at least one of the five classes was based on the
practical realization that all of these subnetworks —along with LANs, MANs,
spaghetti-nets, and future-nets —would someday be interconnected.

5. In the early stages of OSI transport protocol development, only the connection-ori-
ented network service existed. The connectionless network service and a corresponding ad-
dendum to the transport protocol describing how to operate transport protocol class 4 were
introduced later. For reasons unknown, networks that offered a connectionless service were
considered to offer service functionally equivalent to type-C NCs.

THE TRANSPORT LAYER 309

The whole notion of typing network connections was myopic, ill-advised,
and ultimately destructive. Ironically, by insisting on a menu of “tailor-made”
transport protocols, the “network-centric” individuals who had compelling
political and economic motivations to promote a uniform network service accom-
plished just the opposite, exposing how diverse even publicly provided network
services were!

Conformance

What happens when you have more than one choice of protocol? In the
case of OSI transport, every delegation, liaison body, even individuals
within delegations championed a different protocol. It was popular, for
example, but not mandatory, to champion the protocol that one’s delega-
tion introduced. The phrase “spirit of compromise” was at first eagerly
embraced and subsequently worn extremely thin during the joint ISO/
CCITT meetings at which the issue of determining the conformance clause
for the OSI transport protocol was discussed.

Combinations were popular, especially if the combination included
the protocol one championed. In fact, once combinations were recog-
nized as instrumental in proceeding, the joint committees quickly agreed
to eliminate two of the possible combinations (support none and support
all). Eventually, it became clear that under no circumstances would the
network-centric community agree to abandon support for TP0, and hell
would freeze over before the host-centric community would consider
anything other than TP4 sufficient for its purposes. The resultant confor-
mance clause is a travesty, a status quo ante openum: To claim confor-
mance to the standard, you must implement class 0 or class 2 or both.
Further, if you implement class 1, you must implement class 0. If you
implement class 3 or class 4, you must implement class 2. Confused?
There’s more. You can operate only class 4 over the connectionless net-
work service.

AH A The solution? If you are implementing OSI transport for use
with an internetworking protocol (such as CLNP), it’s easy—
class 4 is the only class that will work at all over a connectionless network ser-
vice. To cover all possible cases, including those in which your system will oper-
ate directly over a connection-oriented network (such as an X.25 network) with
no internetwork protocol, implement classes 0, 2, and 4. It’s no big deal adding
classes 0 and 2, since both are no-brainers. Notwithstanding what must have

310

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

seemed like good arguments in their favor at the time, classes 1 and 3 have no
modern constituency and can safely be ignored. If you are an end user, and you
care about reliability, you should insist on class 4; tell your vendors “No discus-
sion —just do it.”

Comparing TP4 to TCP

A 1985 study performed jointly by the U.S. Defense Communications
Agency and the National Academy of Sciences (National Academy of
Sciences Report 1985) concludes that TCP and TP4 are functionally
equivalent and provide essentially similar services. Table 12.5 compares
the functions provided by the two protocols.

Table 12.5 ~ Comparison of TP4 and TCP Functions

Function TCP TP4

Data transfer Streams Blocks

Flow control Octets Segments

Error detection® Checksum Checksum
Error correction Retransmission Retransmission
Addressing 16-bit ports Variable TSAPA
Interrupt service Urgent data Expedited data
Security Not available Variable in TP
Precedence Not available 16 bits in TP
Connection termination Graceful Nongraceful

6. The TCP and TP4 checksum functions are both intended to detect errors that may be

introduced into the data stream between two transport users, but they do not operate in the
same way. The TP4 checksum computation is carried out on the transport packet (header
and user data) only, and it may be disabled (by explicitly selecting the “nonuse of check-
sum” option during connection establishment; the default is to use checksums). The TCP
checksum is carried out on the combination of the transport packet (header and user data)
and a prepended “pseudoheader” consisting of the source and destination IP addresses, the
IP PROTO field, and the TCP segment length, and it may not be disabled. The TP4 check-
sum is also slightly more complicated (both to generate at the sender and to verify at the
receiver) than the TCP checksum, although the additional complexity does not make TP4
significantly more resistant to undetected errors than TCP. An excellent discussion of how
to efficiently implement the TP4 checksum is contained in Sklower (1989); a similar analysis
for TCP may be found in RFC 1071, Clark (1989), and RFC 1141.

THE TRANSPORT LAYER 311

TP4 and TCP are not only functionally equivalent but operationally
similar as well. This is best understood by examining the process of
establishing a transport connection, providing reliable data transfer
through the use of retransmission on time-out mechanisms, and connec-
tion termination of each protocol.

OSI Transport Connection Establishment

In the OSI reference model and the transport service definition, establish-
ing a transport connection is described as a process of matching the
transport service user’s requested quality of service with available net-
work services. One dubious aspect of this process is network service
selection—connection-oriented or connectionless. In many end-system
configurations, this decision process may not exist; for example, many
LAN-based OSI systems will support only TP4 operating over a connec-
tionless network service, and teletex-based systems that are only config-
ured to access a public message-handling service via an X.25 public data
network will support only TPO over X.25. In configurations in which
both a connection-oriented and a connectionless network service are
available, the transport layer supposedly determines which type of net-
work service to select on the basis of quality of service information sub-
mitted along with the T-CONNECT.request, information either stored in
a user-defined configuration file or retrieved from a directory, or some
set of operating system parameters.

During the exchange of transport protocol data units used for con-
nection establishment, parameters that characterize the nature of the
transport connection are negotiated by the two transport entities,”
including:

e TP class: Since we have “choices,” both transport entities must
agree on the class of protocol to be used. (Successful negotiation of
a transport connection implies that the two transport entities share
at least one protocol that is sufficient to provide the transport ser-
vice requested by the initiating application.) The calling transport
entity selects a preferred TP class and may indicate alternative TP
classes it is willing to use if the called transport entity does not sup-
port the preferred class.

7. The current standards for OSI transport define only two-party connections. New work
in ISO on multiparty transport connections had been under way for a year when this book
went to press and is expected to result in amendments to the OSI transport protocol standard
to support connections in which more than two transport entities participate as peers.

312

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

» TSAP IDs: Both the calling and called transport service access point
identifiers are encoded in the connect request transport protocol data
unit.

The transport protocol standard states that encoding of the
AHA . S

ransport service access point identifiers in the connect request
transport protocol service access point is optional and may be omitted when
“either network address unambiguously defines the transport address” (that is,
the transport service access point address can be specified by the network service
access point alone, without the additional information provided by the transport
service access point identifier). This is an unfortunate artifact of the incorpora-
tion of the T.70 teletex transport protocol into OSI; despite what the standard

says, the identifiers are indeed necessary!

« Options: Options are defined for each transport protocol class. If
class 1 is selected, both parties must agree to either use or not use
receipt confirmation (see Chapter 13), and expedited data transfer
provided by the network layer. If class 2 is selected, both parties
must agree whether to use or not use explicit or implicit flow con-
trol. If classes 2, 3, or 4 are selected, both parties must agree to use
normal or extended transport protocol data unit numbering and to
use or not use transport expedited data. If class 4 is selected, both
parties must agree on whether or not to perform a checksum on
transport data packets and which checksum algorithm they will
use.

« Transport protocol data unit size: The OSI transport protocol uses a
fixed maximum packet size ranging (in powers of 2) from 128 octets
to 8,192 octets,® including the header.

e QOS parameters: The calling transport entity may include values of
quality of service parameters indicating the throughput, transit
delay, and residual error rate expectations of the end-user application
initiating the communication. In theory, these values assist the called
transport entity in deciding whether a transport connection can be
established that satisfies the end-user criteria for communication.

8. An amendment to the OSI transport protocol that allows for the negotiation of
much larger maximum packet sizes in much smaller increments was recently adopted by
both ISO and CCITT. The new ”preferred maximum TPDU size” parameter is encoded as a
variable-length field of up to 32 bits that gives the maximum data packet size in units of
128 octets, allowing for the negotiation of any maximum data packet size from 128 octets to
236 octets in increments of 128 octets.

THE TRANSPORT LAYER 313

Other parameters exchanged during transport connection establish-
ment include the called and calling transport service access point identi-
fiers, the value of the initial credit (how large a window the called trans-
port entity will offer), and timer values germane to the operation of spe-
cific protocol classes. For example, if TP4 is selected as the preferred
class, an acknowledgment time is exchanged by the called and calling
transport entities. This timer value is used during data transfer as an
approximation of the amount of time a transport entity will delay follow-
ing reception of a data packet before sending an acknowledgment packet.
For classes 1, 3, and 4 operating over a network connection, the value of
reassignment time (how long before the called transport entity will
attempt to reassign this transport connection to another network connec-
tion following a network connection failure) is exchanged.

To establish a transport connection, a transport entity composes a
connect request packet (CR TPDU) and submits it to the network layer for
delivery to the destination transport entity. The destination transport
entity is identified by the network address indicated in the network ser-
vice primitive that conveys the connect request packet (an N-CON-
NECT.request or N-UNITDATA. .request; see Chapter 13). Figure 12.5
shows the composition of the CR TPDU.

Transport protocol classes 2, 3, and 4 provide the ability to multi-
plex many transport connections onto a single network connection. To
distinguish one transport connection established between a given pair of
transport entities from another, two 16-bit references fields are used. In

1 2 3, 4 5 6 7 8—p p+1, g
d ass Vari abl e TS
LI CR CDT DST-REF SRCREF option part user dat a

' '

TPclass =0-4

32oct et s,
Setto0 TPDU f or mat , your choi ce
. andf | ow
Your choi ce ;
controloption
Type code =
yp xR Checksum (TP4),

credit (CDT) set

initiallyto0000

or of f eredupper
w dowedge

TSAPA, QCB,
pr oposed nmax TPDUsi ze,
version,tiners,protectio
net wor k expedi t ed (TP1) "
recei pt confirmnation(TP1
transport expedi t ed?
al t er nat eTPcl asses?

FIGURE 12.5 Connect Request Packet

314 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

1 2 3, 4 5 6 7 8-p p+1, q
d ass Vari abl e TS
L CR COT DST-REF SRC REF option part user dat a
Type code = CC i Negot i at ed 320(i ets
Your choi ce TpPcl assand your choi ce
options
The val ue of SRC- REF Ot\;aelrl(j)?j?fons
fromt hecorrespondi ng negoti at ed

CR TPDU

FIGURE 12.6 Connect Confirm Packet

the connection request package, the calling transport entity encodes a
value for the source reference (SRC-REF in Figures 12.5 and 12.6) field; a
destination reference (DST-REF in Figures 12.5 and 12.6) field is set to 0, to
be determined by the called transport entity. The called transport entity
encodes its own source reference in the source reference field of the con-
nect confirm packet (CC TPDU) and places the value from the source refer-
ence field of the connect request packet into the destination reference
field of the connect confirm packet. The pair of references uniquely iden-
tifies this transport connection between this pair of transport entities. The
selection of the values for references is a local matter.” Typically (e.g., for
simplicity), references are assigned sequentially.

Upon reception of a connect request packet, the called transport
entity parses the packet and determines whether it can support the pre-
ferred TP class indicated; if it cannot, it determines whether it can support
any of the alternative TP classes identified. If it cannot support any of the
TP classes indicated, it must reject the connection (see “Connection
Release (Connection Refusal) in the OSI transport protocol”). Table 12.6
illustrates the permissible combinations of preferred and alternative TP
class parameter encodings.

The called transport entity next determines which options it can
support among those selected by the calling transport entity. The rules
governing the response to options selected are straightforward. If the call-
ing transport entity proposes the use of an option—i.e., by setting the flag

9. ISO/IEC 8073 defines a “local matter” as “a decision made by a system concerning
its behaviour in the Transport Layer that is not subject to the requirements of this proto-
col.” In plain-speak, use any value you please, so long as you can guarantee its uniqueness
for the duration of time during which references are to be frozen.

THE TRANSPORT LAYER 315

Table 12.6

Combinations of Preferred / Alternative TP classes

Preferred
class

0

Alternative class

1 2 3 4 None

= W N =R O

Not valid

TP1 or TPO
TP2 or TPO
TP3, TP2, TPO
TP4, TP2, TPO

Not valid

TP1 or TPO

Not valid
TP3, TP2, TP1, TPO
TP4, TP2, TP1, TPO

Not valid
Not valid
TP2
TP3 or TP2
TP4 or TP2

Not valid
Not valid
Not valid
TP3 or TP2
TP4, TP3, TP2

Not valid
Not valid
Not valid
Not valid
TP4 or TP2

TPO
TP1 or TPO
P2
TP3 or TP2
TP4 or TP2

Three-Way
Handshake

representing the option to 1—the called transport entity may agree to use
the option by leaving the flag set to 1, or it may refuse to use the option
by setting the flag to 0. If the calling transport entity does not propose the
use of an option, the called transport entity may not propose its use.

The called transport entity must also determine whether it can sup-
port the maximum packet size indicated or whether it must indicate that
a smaller maximum packet size should be used, and whether it can main-
tain the QOS indicated.

Once these decisions are made, and assuming that a transport con-
nection can be successfully negotiated, the called transport entity returns
a connect confirm packet, indicating what choices it has selected from
the negotiable parameters (see Figure 12.6).

The called transport entity also records values of parameters rele-
vant to the operation of the transport protocol that may have been sent
in the connect request transport protocol data unit; e.g., the values of
either the acknowledgment time or the reassignment time, and the initial
credit. These values are used during the data-transfer phase and for error
recovery purposes.

The process of establishing a transport connection is only partially com-
pleted when the calling transport entity receives a connect confirm pack-
et unit from a called transport entity; the calling transport entity has
parsed the connect confirm packet, and it knows that the called transport
entity is indeed willing to establish a transport connection. The calling
transport entity also knows the characteristics that the called transport
entity has negotiated for the transport connection (the called transport
entity has indicated these in the connect confirm packet it has com-
posed). Like the called transport entity, the calling transport entity will
have recorded values of parameters relevant to the operation of the
transport protocol that may have been sent in the connect confirm

316

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

packet—the values of either the acknowledgment time or the reassign-
ment time, and the initial credit.

At this point, however, the called transport entity hasn’t a clue
whether the negotiated characteristics for the transport connection are
acceptable or even whether the connect confirm packet has been deliv-
ered to the calling transport entity. The calling transport entity thus has
the additional responsibility in the transport connection-establishment
process of providing the called transport entity with an indication of
whether transport connection establishment succeeded or failed.
Assuming that the transport connection has been successfully negotiated,
the calling transport entity has two choices:

1. Return an acknowledgment packet (AK TPDU).
2. Start sending data.

The first mechanism is always available to the calling transport
entity. Figure 12.7 shows the format of the acknowledgment packet.

Reception of an acknowledgment packet by the called transport
entity following transmission of a connect confirm packet provides the
called transport entity with an explicit acknowledgment that the calling
transport entity accepted the transport connection with the negotiated
characteristics. Confirmation that the transport connection is successfully
negotiated in this manner is called a three-way handshake. Figure 12.8 pro-
vides a simplified illustration of this process.

1 2 3, 4 5-8 9-10 11-p
LI AK DST-REF | YR- TPDU- NR coT Va[)'ﬁ" €
Checksum
Sequenceno. of next
expect ed DT TPDU How many DT
Type code = AK 0110, TPDUs
| ow or der ni bbl e = 000(I’ mgonnal et
' yousend

I denti fi esrequest edTCat
renmotetransportentity

FIGURE 12.7 Acknowledgment Packet

THE TRANSPORT LAYER 317

Relevant information encoded in the acknowledgment packet in-
cludes:

o Destination reference, which contains the value of the calling trans-
port entity’s reference number.

 Your transport protocol data unit number (YR-TPDU-NR), which con-
tains the value of the next expected sequence number (1), implicitly
acknowledging the receipt of all transport protocol data packets up
to and including sequence number n-1 (modulo 27 arithmetic if
normal formats, modulo 23! if extended formats). Sequence num-
bers are used in the data-transfer phase of a transport connection to
distinguish packets containing normal data from one another and
to assist in determining whether data packets have arrived in order
or have been lost or duplicated. The OSI transport protocol begins
every transport connection with an initial sequence number of 0;
since no data have yet been transferred, YR-TPDU-NR here con-
tains a value of 1.

 CDT contains the initial credit allocated by the calling transport entity
to the called transport entity (the number of transport protocol data
packets I'll allow you to send before you must wait for me to
acknowledge that I've received them).

+ Other parameters, including a checksum computed on the acknow-
ledgment packet and an acknowledgment sequence number (see
“Normal Data Transfer in OSI transport protocols,” later in this
chapter).

A second mechanism is available for situations in which the called
transport entity has indicated a non-0 initial credit value in the connec-
tion packet. The calling transport entity then has the option of immedi-
ately sending any normal or expedited transport service user data wait-
ing for transfer; the first data packet (DT TPDU) or expedited data packet
(ED TPDU) received by the called transport entity in this case is inter-
preted as a completion of the three-way handshake (again, refer to
Figure 12.8).

Setting It All to Unix

If one were to trace the OSI transport connection-establishment process
through the UNIX system calls described earlier in this chapter and the
associated transport protocol state machine, then trace the packets that
traversed the network while the process took place, and assuming that

318

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

AK, DT, or ED TPDU |

FIGURE 12.8 Three-Way Handshake

both transport users are on ARGO 1.0 UNIX, the time sequence of events
might look like the one shown in Figure 12.9.

In the figure, transport user A invokes the UNIX system call sock-
et(AF-1SO, sock-seqpacket, ISO TP) to create a local communication end-
point. Transport user B does the same. Both parties invoke the UNIX sys-
tem call bind(), which is used to assign a transport service access point
address to their respective sockets. Transport user A requests a transport
connection by issuing the connect() system call. The transport entity com-
poses a CR packet, requesting TP class 4 and indicating that the reference
number it will use for this transport connection is 5 (SR in the first step of
Figure 12.9). The network layer is called upon to transfer the CR packet.

The called transport entity at B receives the CR packet (transport
user B has invoked system calls to passively await an incoming transport
connection—i.e., it has issued a listen(). It agrees that TP class 4 is a won-
derful choice and agrees with all the rest of the choices the calling trans-
port entity has indicated. It composes a CC packet reflecting consent to
all these selections. The called transport entity copies the source refer-
ence from the CR packet into the destination reference field (DR in the
second step of Figure 12.9) and indicates that the reference number it
will use for this transport connection is 2 (SR in the second step of Figure
12.9); the pair of reference numbers {5, 2} now distinguishes this trans-

THE TRANSPORT LAYER 319

sl
Net wor k

UNI X System A UNI X System B

Transport User TS Provi der Transport User B
socket () socket ()
bi nd() bi nd()
connect () listen()
(T- CONNECT. r equest) CR TPDU,
Preferred
T —p» | dass=4, accept ()
| CDT = 0,
M DR =0,
E SR=5 ('T- CONNECT. r equest)
Noexpl i ci t

returnfromconnect () CC TPDU, T- CONNECT. r esponse

Preferred
Qd ass=4,
e

V' | oot =0,

DR =5,
SR=2

(T- CONNECT. confi rm
AK TPDU
DR=2 _| g Three-way
<ot = 5, handshake
YR-TUNR = 1
conpl ete

Y
FIGURE 129 Setting Connection Establishment to UNIX

port connection from others established between transport service users
A and B. In the example, the called transport entity also indicates an ini-
tial credit (CDT) of 0. The called transport entity then calls upon the net-
work layer to transfer the CC packet.

The calling transport entity receives the CC packet, noting with
great enthusiasm that the called transport entity has accepted all pro-
posed transport connection selections. It composes an acknowledgment
packet, setting the destination reference field to 2, the value identified by
the called transport entity for this transport connection; offers a credit of
5; and indicates that the next expected sequence number (YR-TPDU-NR)
is 1. The network layer is again called upon to transfer the AK packet. A
return from connect() completes transport connection establishment for
transport service user A. The called transport entity receives the AK
packet, which completes the three-way handshake. A return from the
accept() call completes transport connection establishment for transport
service user B.

320

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Frozen References

An important consideration when using references is providing a mecha-
nism to avoid reuse of a reference to identify a new transport connection
while a packet associated with a previous use of the same reference may
still be “trollicking”!? along a network connection or bounding its way
along as a connectionless NPDU. A reference would be reused when the
value of the 16-bit reference counter “wraps” in modulo 2 arithmetic;
although the circumstances under which this might occur seem extraor-
dinary, betting the ranch that it won’t isn’t a very good idea. A procedure
called frozen references offers some guidance to the implementer on how
to deal with this phenomenon. In TP4, one way to bound the time (L) to
freeze a reference is to wait a minimum of the computed or estimated
round-trip time—the sum of the time required to transfer an NSDU from
the local transport entity to the remote transport entity (M,) and back
again (Mg,)—plus the value of acknowledgment time the remote transport
entity indicated in the CR transport protocol data unit (Ay), plus the
value of what is known as the persistence time (R), which is how long the
local transport entity will try to resend an unacknowledged transport
protocol data unit before “giving up.” The formula is:

L=M;g+ Mg +R+ Ay

Like all simple things, however, this formula has its weaknesses
(see “Timers and Open Transport Protocols,” later in this chapter). In
practice, this value of L may be too large; better too large, however, than
too small! One must remember the purpose of the timer and choose a
value that can be lived with.

TCP Connection Establishment

The synchronize stream (SYN) process of TCP is functionally equivalent to
connection establishment in the OSI transport protocol. TCP operates as
a pair of independent streams of (octets of) data between upper-layer
protocols. The synchronization process establishes the beginning of the
byte stream in both directions of information flow. During SYN process-

10. “Trollicking” is derived from the word trundle, meaning “to roll on little wheels; to
bowl along,” and frollicking, meaning “dancing, playing tricks, or frisking about.” Any
transport packets remaining in a network connection during a “frozen references” time
period clearly could only be there to cause mischief . . .

THE TRANSPORT LAYER 321

ing, information is exchanged between TCP processes that is similar to
the information negotiated (or implied) during OSI transport connection
establishment:

o Addressing: The named sockets (source and destination port addresses)
for the upper-layer protocol pairs that will use the TCP connection
are exchanged during the SYN phase.

* Initial sequence number (ISN): All OSI transport protocol classes
begin a transport connection using an initial sequence number of 0.
TCP offers greater latitude, allowing TCP entities to identify the
initial octet sequence number in the SYN segment.

* Data offset: contains the number of 32-bit words in the TCP segment
header; and therefore points to the first octet of user data.

o Window: Similar to OSI TP’s credit, the value in the window field
indicates the number of bytes of information the originator of the
SYN is willing to accept.

o Checksum: A 16-bit arithmetic checksum is computed on the header
and data of all TCP segments.

o Maximum segment size (MSS): Upper-layer protocols negotiate the
maximum transport segment size (in octets). The default value on
the Internet for TCP maximum segment size is 536 bytes (RFC
879).11

Unlike OSI’s transport protocol, all TCP segments have the same
format.’? Figure 12.10 illustrates the encodings of fields significant for the
SYN segment.

Many of the option facilities negotiated in OSI TP connection estab-
lishment are nonoptions in TCP. For example, urgent data—the closest
thing to OSI's expedited data transfer—is a service that is always avail-
able in TCP connections. TCP always uses explicit flow control. TCP is
only operated over a datagram service. And TCP wouldn’t know receipt
confirmation if it were bitten by the warty little beast.

To confirm the establishment of a TCP segment, the responding

11. Extensions to TCP by Van Jacobson, R. Braden, and D. Borman (RFC 1323) describe
how large segment sizes and windows are negotiated by TCPs; like the amendment to the
OSI transport protocol, this mechanism allows TCP entities to negotiate and use very large
TCP packets, necessary for networks that exhibit high bandwidth but have long round-trip
delays. Van Jacobson and company have colloquially termed such transmission facilities
“long fat networks (LFNs),” pronounced “elephan(t)s.”

12. The Internet convention for illustrating protocol headers in its standards is to depict
the fields in 32-bit sequences. In this chapter, the authors have elected to draw both OSI
transport protocol and TCP headers according to ISO conventions (with apologies to the
Internet community).

322

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

1, 3,4 5-8 9-12 13 14 15, 16 17, 1¢ 19, 2t 21-p p+1,q
Source| Dest | Seq | Ack | Data . Check- ’
port port no. no. of f set Qde | W ndow sum Ugent | Qptions | Pad

\/ e l

I nt er net por t ACK = 0

Max segsi ze
nunbers of
appl i cati on PUSH = 0 W ndowscal e
. RESET = 0 SACKpernitted
I ni ti alsequence SYN = 1 (RFC 1323)
nunmber (1SN, FIN=0

initiatodirectior

I'ni tialw ndow
adverti senent
byi ni ti at or

FIGURE 12.10 TCP SYN Segment

TCP entity acknowledges receipt of the SYN segment by generating a TCP
segment with the code field bits SYN and ACK set to 1. The responding
TCP entity acknowledges receipt of the initiator’s SYN and attempts to
synchronize the byte stream in the responder-initiator direction in a sin-
gle TCP segment. This process, called piggybacking, improves protocol
efficiency in several ways. Since only one segment must be created and
transmitted to accomplish two tasks, less processing is devoted to proto-
col composition/decomposition. Fewer bytes of protocol header informa-
tion are required, so less bandwidth is required. And since two tasks are
accomplished in one transmission, overall delay is improved.

Setting the ACK bit in the code field indicates that the acknowledg-
ment number field is significant. In the case of a SYN/ACK segment, the
responding TCP entity should encode this field with the value of the ISN
derived from the originator’s SYN packet, incremented by 1. The values
of the source and destination ports are encoded in reverse order (i.e., the
called TCP entity is the source of the SYN/ACK segment, and the calling
TCP entity is the destination). The responding TCP entity synchronizes
sequence numbers by encoding the ISN for the responder-to-initiator
direction of information flow. Figure 12.11 illustrates the encoding of the
fields significant to the SYN/ACK segment.

A three-way handshake is common to OSI’s transport protocol and
TCP. In TCP, the three-way handshake is completed when the initiator
returns a TCP segment with the ACK bit of the code field set to 1 (see
Figure 12.12). A TCP segment containing an acknowledgment can also
contain user data (another use of piggybacking); thus, if the responder

THE TRANSPORT LAYER 323

1, 3, 4 5-8 9-12 13 14 15, 16 17, 1t 19, 2(21-p p+1, ¢
Source| Dest | Seq | Ack | Data . Check- ’
tions
port port | no. no. |offset Cpde | W ndow sum Ugent | Qpti Pad
\ / Initiator’s I'ni tial wi ndow l
I nternetport adverti serent ;
nunber s of ISN+ 1 by r esponder Maxseg si ze
appl i cation y W ndowscal e

SACKperm tted

(asnegot i at ed)
I ni ti alsequence

nunber (I SN),
initiatomirectior ‘

URGENT=0
ACK = 1
PUSH = 0
RESET = 0
SYN=1
FIN=0

FIGURE 12.11 SYN/ACK Segment

indicated a non-0 initial window in the SYN/ACK segment, the initiator
can send up to “responder’s initial window” number of bytes of data in
the SYN/ACK segment.

Figure 12.13 sets TCP connection establishment to UNIX in much
the same fashion as Figure 12.9 does for OSI TP4.

In the figure, a client process (ULP A) on host A creates a socket,
binds a port number to that socket, and attempts to connect to ULP B on
host B. A’s TCP entity composes a TCP segment with the SYN flag set
and sets the ISN to 200. A server process (ULP B on host B has also creat-
ed a socket and has bound a port number to that socket, and is awaiting

1, 3,4 5-8 9-12 13 14 15, 16 17, 1t 19, 2t 21-p p+1, ¢
Source| Dest | Seq | Ack | Data , Check- .
tions
port port no. no. | offset (ode | W ndow sum Ugent | @ Pad

Vs

Responder’ s
I nt er net por t 1SN+ 1
nunber s of URGENT=0
appl i cation ACK = 1
PUSH = 0
RESET = 0
SYN=10
FIN=0

FIGURE 12.12 ACK Segment Encoding

324

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

“Keep Quiet”’—
TCP’s “Frozen
References”

e T —)

Host A TCP Host B

socket ()
bi nd()
connect (

socket ()
bi nd()
listen()

SYN, 1SN =200 | ———— \

accept ()

e

mz —

[Ack 201, sy 1snss0]

| —

/

returnfromconnect (

I o] —

FIGURE 12.13 Setting TCP Connection Establishment to UNIX

incoming connect requests at a well-known port number). The SYN pack-
et arrives, is processed by host B’s TCP entity, and the server process at B
is notified of the incoming connect request. ULP B accepts the connection
(managing TCP endpoints as described earlier in this chapter). Host B’s
TCP entity composes a TCP segment with both the SYN and ACK flags
set and with an ISN of 550. The ACK flag indicates that the acknowledg-
ment field is significant, and it is set to the value of the ISN received in
A’s SYN packet plus 1 (i.e., 201). When the SYN/ACK segment arrives at
host A, ULP A is informed, and A’s TCP entity attempts to complete the
three-way handshake by returning a segment to host B with the ACK
flag set, indicating that the ackowledgment field is significant in this seg-
ment (and set to the value of the ISN received in the SYN/ACK packet
plus 1; in this case, 551). If host B had offered an initial window, host A
could have piggybacked data along with the acknowledgment.

TCP also worries about reusing a sequence number before its time (well,
chronologically speaking, TCP worried first!). To prevent sequence num-
bers from a previous incarnation of a TCP connection from being mistak-
en for segments of a new connection, RFC 793 suggests that TCP send no
segments for a time equal to the maximum segment lifetime (MSL). The
recommended value for MSL in RFC 793 is 2 minutes, although this is an
engineering choice (a cousin to OSI's “local matter”).

THE TRANSPORT LAYER 325

Normal Data Transfer in OSI Transport Protocol

Once a transport connection has been established, transport service user
data may be transferred bidirectionally between communicating session
entities (transport service users). The OSI transport service allows corre-
sponding transport service users to submit arbitrarily large (theoretically
unbounded) transport service data units. In the context of providing reli-
able transfer, the sending transport layer performs segmentation of
transport service data units into transport protocol data units up to the
maximum transport protocol data unit size negotiated during transport con-
nection establishment and submits the transport protocol data units to
the network layer for forwarding and delivery to the destination trans-
port entity.

The means by which a sending transport entity determines whether
transport protocol data units arrived without mishap at their destination
varies depending on the transport protocol class negotiated. Mechanisms
are provided in class 4 to assure that individual transport protocol data
units are explicitly acknowledged and that the transport service data
units are reassembled correctly into the original transport service data
unit prior to delivery to the destination transport service user. The lesser
or invertebrate transport protocol classes rely mainly on gimmicks, chi-
canery, hand waving, and the network layer to provide all or nearly all
aspects of reliable data transfer.

In transport classes 0 and 2, for example, transport service data
units are segmented and submitted to the network layer for in-sequence
transfer, and the network service is relied upon to detect (but not correct
for) loss. Users of a transport connection supported by TPO or TP2 act in
blind faith; unless the underlying network connection signals an error,
they continue to submit transport service data units and assume that
they will be delivered correctly. If, however, an error is signaled by the
network service provider, the transport connection is abruptly terminated,
and both transport service users are left to fend for themselves. TP2 users
are left multi- and per-plexed, and the upper layers are left to clean up
the mess.

Transport classes 1 and 3 provide error recovery following a failure
signaled by the network service using reassignment after failure, retention
until acknowledgment, and resynchronization functions, as follows:

+ If the underlying network connection signals a disconnect, TP1 can
map the existing transport connection onto a new network connec-
tion. Copies of unacknowledged data packets are retained by a

326

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Flow Control

sending transport entity until a new network connection is opened.
The retained packets are then retransmitted by the sending transport
entity (remember, information flow across a transport connection is
bidirectional, so both parties may act as senders) and explicitly
acknowledged by the receiver, thus resynchronizing the information
flow of the transport connection.!?

« If the underlying network connection signals an error (a reset),
transport entities retransmit unacknowledged data packets to re-
synchronize the data streams in both directions (over the same net-
work connection).

Remember, these Mickey Mouse mechanisms are considered to be
sufficient because acceptable levels of service quality are purportedly pro-
vided by the network service; in the real world, they are probably ade-
quate when both transport service users subscribe to the same public net-
work provider or are attached to the same physical subnetwork. Since
you can’t be too careful these days, it’s better to practice “safe network-
ing” than to deny the possibility of network connection failures and say,
“Well, it won’t happen to me.”

A major concern in maintaining service quality in a network is seeing
that information flows into the network at a manageable rate. Just as a
highway can handle only so many automobiles before traffic initially
slows and then comes to a stop, networks can only switch a finite num-
ber of packets before experiencing similar congestion. To prevent traffic
jams on major California highways surrounding Los Angeles, for exam-
ple, traffic signals are positioned on the entrance ramps. These allow
automobiles to enter the roadway at intervals that vary according to the
amount of traffic already present on the roadway. By regulating the flow
of automobiles onto the roadway, congestion is temporarily avoided.!#
Of course, roads are rarely built to handle peak loads (rush hours), and
under these conditions, highway congestion inevitably occurs (some-
times the traffic lights at entranceways are turned off, a visible sign of
surrender or congestion collapse).

Similar techniques are used in networks to avoid congestion. The

13. Copies of connect request and connect confirm TPDUs—and for reasons unknown,
TPDUs used for connection release (DR and DC TPDUs)—are retained in the same
fashionto permit completion of transport connection establishment or release if the net-
work connection disconnects during that phase of operation.

14. Los Angelenos may deny that this works at all, but the fault lies in the fact that con-
gestion-avoidance mechanisms have been applied to highways that have existed in a con-
gested state for decades.

THE TRANSPORT LAYER 327

rate of information flow into a network (incoming packets) is regulated
according to the network’s ability to switch packets. Flow control is a
classic networking problem, and a variety of flow-control techniques have
been employed to avoid congestion. Of these, OSI employs both implicit
and explicit flow-control techniques in its transport protocol classes.

In a public network service, users subscribe to and expect a certain
rate of throughput (often, a negotiated quality of service characteristic);
thus, it is no surprise to find that transport classes 0 and 1 are designed
to rely entirely on the network service provider to regulate the flow of
transport protocol data units. This implicit flow control’® is straightfor-
ward (and autocratic): the sending transport entity submits transport
protocol data units to the network service (in the form of NSDUs); the
network layer accepts the NSDUs and forwards them at a rate it chooses,
typically one consistent with maintaining some degree of uniform ser-
vice quality for all subscribers. Transport service users continue to sub-
mit transport service data units, and TP0 and TP1 faithfully continue to
create transport protocol data units and submit them to the network
layer until the local buffer pool allocated to the transport layer is
exhausted. TPO and TP1 then halt and accept no transport service data
units from the session layer; the effect of halting percolates through the
upper layers and has the same back-pressure effect on information flow
that (gradually) closing a faucet has on the flow of water. Normal user
data cease to flow out of the end system until the back-pressure condi-
tion is eased; i.e., until the network layer accepts a sufficient number
from the queue of previously submitted NSDUs to allow the flow of
information to continue.

A shortcoming of this form of flow control is that although the net-
work layer is somewhat insulated from congestion, an end system
receiving packets has no explicit means of indicating that it cannot accept
packets at the incoming rate. TPO and TP1 again rely upon the network
service to deal with this situation; protocols used to provide the OSI con-
nection-oriented network service (e.g., X.25) have facilities that enable an
end system to signal that it is temporarily unable to receive incoming
packets (there are no explicit network service primitives to signal “con-
gestion”; how the transport layer indicates an “unable to receive” state is
a local matter).

Flow control is no less important in private internets; the mecha-
nisms, however, are more democratic. All transport entities are expected

15. Implicit flow control is optionally available in TP2 and must be negotiated during
connection establishment.

328

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

to participate in an explicit flow-control process. TP4, for example, uses a
sliding window mechanism; very simply stated, this form of flow control
proceeds as follows:

1. Each transport entity indicates a number of data packets that it is
able to receive; this is called the credit (CDT). The initial credit value
is exchanged during connection establishment. During data trans-
fer, CDT is added to the value of the highest sequence number
acknowledged (called the lower window edge [LWE], initially 0) to
create the send window. This sum is called the upper window edge
(UWE).

2. A sending transport entity sends a number of transport protocol
data units equal to the credit, then waits for an explicit acknowledg-
ment packet before continuing to send.

3. Upon reception of an acknowledgment packet, a sending transport
entity extracts the value of the sequence number (YR-TPDU-NR)
from the AK packet and uses this value as the new LWE; it also
extracts the value of CDT from the AK packet and adds this to the
new LWE to determine the new UWE.

As steps 2 and 3 are repeated, the sequence numbers are incremented
using modulo 2 arithmetic, and the send window “slides.” By increasing
or decreasing the value of CDT, the size of the send window increases or
decreases. This is also called opening or closing the send window.

Different policies are applied to determine the appropriate value of
CDT. One simple policy for determining the initial value of CDT is to
divide the number of bytes of buffer space available for the receiver side
of the transport protocol by the maximum transport protocol data unit
size to yield an integer value for CDT; for example, if there are 4,096
octets of receive buffer available, and the maximum transport protocol
data unit size negotiated for this transport connection is 1,024, then CDT
could be set initially to 4.

Reliability Mechanisms to Deal with the Real World

Of the OSI transport protocol classes, only TP4 was developed to deal
with real-world situations in which, despite the best efforts exerted by
the network layer, bad things happen to transport protocol data units on
their way from source to destination: specifically, transport protocol data
units may get lost, multiple copies of the same transport protocol data
unit may be delivered, transport protocol data units may be delivered to

THE TRANSPORT LAYER 329

the wrong end system, bits of the transport protocol data unit header
and (worse) user data may get corrupted, and the transport protocol
data units may arrive out of order. TP4 deals with these errors as fol-
lows:

Receipt of each data packet is explicitly acknowledged using an
acknowledgment packet; absent an explicit acknowledgment for a
data packet sent, the sender assumes that it has been lost (or misde-
livered).

Destination transport connection reference information encoded in
each data and acknowledgment packet is used to distinguish the
data and acknowledgments of one transport connection established
between a pair of transport service access points from those of an-
other and to determine whether a data packet has been misdeliv-
ered.

Transport protocol data unit numbers encoded in the data and ac-
knowledgment packet headers are used to detect out-of-order
arrival and duplicate arrival.

Adaptive timer mechanisms are used to avoid injection of duplicate
packets into the network.

When selected, an arithmetic checksum computed on the user data
of each data packet is used to detect bit-level corruption.

An important function performed by sending TP4 entity is deter-

mining that loss has occurred and correcting for the error; this mecha-
nism is called retransmission on time-out in OSI (see Figure 12.14). Each

m< — 4

\

T- DATA. r eques

—
wor
User A User B

qat e | Type = DT, YR-TPDU-NR= 1, EOT |

retransni ssion
timer (T1) ¢
Bl ack
Hol e
Ret ransni ssi on
timerexpires;

resendpacket ; | Type = DT, YR-TPDU-NR =1, EOT | \

restart timer T1

- || Type=AK YRTPDUNR=2 |

FIGURE 12.14 Retransmission on Time-out

330

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Sender TP4
Responsibilities

time a TP4 entity sends a DT transport protocol data unit, it runs a
retransmission timer (T1); if the explicit acknowledgment of receipt of the
data packet is not received by the sender prior to the expiration of the T1
timer, the sender assumes that the data packet is lost and retransmits it.

The detailed manner in which the sender and receiver cooperate to
achieve reliability through retransmission is best understood by examin-
ing each separately.

Like the lesser transport protocol classes, the sending TP4 transport enti-
ty segments transport service data units into data packets (if necessary);
the data packets are often a fixed size (except the last segment of a pack-
et), up to the maximum packet size negotiated during connection estab-
lishment.!® A sequence number is assigned to each data packet (YR-
TPDU-NR in Figure 12.14); the initial value of the YR-TPDU-NR field is
always 0, and YR-TPDU-NR is incremented by 1 for all subsequent data
packets transferred in the transport connection. The combination of DST-
REF and YR-TPDU-NR is used to differentiate transport protocol data
units of different transport connections multiplexed between the same
pair of transport entities. If multiple transport protocol data units are
required to transfer a single transport service data unit, the end of trans-
port service data unit (EOT) bit in the data packet header is set to 0 in all
but the packet containing the final segment of the transport service data
unit (indicating that there are more user data to come); the EOT bit is set
to 1 in the data packet containing the final segment of the transport ser-
vice data unit (see Figure 12.15).

Initially, the sending TP4 entity may send one or more data packets,
up to the value indicated in the CDT field of

+ The connect request packet if the sender was the responder during
connection establishment.

» The connect confirm packet if the sender was the initiator during
connection establishment.

The sender retains a copy of each data packet sent. It also maintains
information about the number of transport protocol data units it has sent,
as well as the sequence numbers of those packets, and the sequence number
of the next data packet the receiver expects!'” (the lower window edge).

16. In practice, the maximum packet size should be less than or equal to the maximum
NSDU size offered by the network layer between the source and destination end systems.
17. Sequence numbers in acknowledgment packets are interpreted as meaning “I
acknowledge receipt of all data packets, in sequence, up to but not including the sequence
number indicated in the YR-TPDU-NR field.”

THE TRANSPORT LAYER 331

TSDU

Sessi on|l aye

Transport | ayel TSAP A
Assune TSDUsi ze =5, 000 oct et s
TPDUsi ze negot i at ed =2, 048,
DT TPDU header | ength =8
Assune max NSDU
Size=2,0480ctets

Fi nal TPDUsent

| DT, YR-TPDU-NR =3, ECT = 1, TS-userdata = octets 4, 080- |—

Second TPDUsent
| DI, YR-TPDU-NR =2, EOT =0, TS-userdata = octets 2, 040- |——>

I'ni tial TPDUsent
| DI, YR TPDU-NR=1, EOT = 0, TS-userdata = octets 0-2 |——>

Net wor k | ayer

Retransmission
Timer

FIGURE 12.15 Example of Transport Segmentation / Reassembly!®

The sender adds the value of the credit indicated by its peer transport
entity to the lower window edge, creating the new upper window edge.
These two values determine the new send window; acknowledgments
containing sequence numbers outside this window are as-sumed to be
duplicates.

A retransmission timer is run for each data packet, or for a set of data
packets forming a contiguous sequence (send window). If an acknowl-
edgment is received containing a sequence number within the send win-
dow, the sender safely assumes that all data packets having sequence
numbers up to (but not including) this value have been received. The
value of YR-TPDU-NR from the acknowledgment packet becomes the
new lower window edge, the value of CDT in the acknowledgment
packet is added to the lower window edge to arrive at a new upper win-
dow edge, and the new send window is recomputed.

If the retransmission timer expires, several implementation alterna-

18. To avoid situations in which dividing the transport user data into maximum
length packets would result in an exceedingly small “final” TPDU, algorithms that deter-
mine the optimal segmentation based on available network maximum data unit size are
applied.

332

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Receiver TP4
Responsibilities

tives are available to the sender; for example, it can update the lower
window edge and retransmit only the data packet whose YR-TPDU-NR
is equal to the value of the lower window edge, or it can retransmit all or
a part of the reevaluated send window (from new lower window edge to
old upper window edge). (The value of the retransmission timer is dis-
cussed separately; see “Timers and Open Transport Protocols,” later in
this chapter.)

The primary responsibilities of the receiver are to explicitly acknowledge
correct receipt of individual data packets using an acknowledgment
packet, correctly reassemble data packets into transport service data
units (when necessary), and deliver transport service data units to the
called transport service user. Acknowledgment packets are generated

» Upon successful receipt and processing of a data packet.

o When advertised credit is reached (the window is full).

« To allocate credit; i.e., to increase or reduce the upper window edge
(to open or close the window) and thus identify the number of data
packets the receiver is willing to handle. (Often, the initial value is a
simple calculation of available receive buffer size divided by the
negotiated maximum packet size.)

A receiver TP4 entity also returns an acknowledgment packet upon

» Receipt of a duplicate data packet.
+ Expiration of the window timer (see “Timers and Open Transport
Protocols”).

When the receiver determines that a transport service data unit is
arriving in segments (multiple data packets), it must also worry about
correct reassembly of the transport service data unit. The retransmission
procedures assure that the sender will resend data packets the receiver
does not acknowledge (they were not received or were received and
failed the checksum computation), and the receiver weeds out duplicate
data packets using the TPDU numbering and reference fields of the data
packet, but transport protocol data packets may still arrive out of order.
One possible strategy that a receiver may use to correctly order data
packets that have arrived out of order is to maintain

* An in-order list, containing data packets units of a partially reas-
sembled transport service data unit that arrive in sequence.

» An out-of-order list, containing data packets of a partially reassem-
bled transport service data unit that arrive out of sequence.

» A next expected transport protocol data unit number (NEXT-EX-

THE TRANSPORT LAYER 333

Sequencing
Acknowledgment
Packets in OSI
TP4

PECTED-TPDU-NR) variable, containing the value of the next
expected TPDU sequence number (i.e., the sequence number of the
data packet that would sequentially follow the last data packet in
the in-order list).

When a data packet arrives, if the value of YR-TPDU-NR transport
protocol data unit NR is not the same as the value of next expected trans-
port protocol data unit number, the receiver adds this data packet to the
out-of-order list, in order with respect to the rest of that list. If a data
packet arrives and the value of YR-TPDU-NR is the same as the value of
next expected transport protocol data unit number, the receiver adds the data
packet to the tail of the in-order list, checks the out-of-order list for one
or more data packets that follow the newly arrived data packet in
sequence, and moves these to the in-order list. If at any time in this pro-
cess a data packet is encountered containing the final segment of the
transport service data unit (EOT = 1), the process is stopped; otherwise,
the receiver adjusts next expected transport protocol data unit number to con-
tain the value of the sequence transport protocol data unit number of the
next expected data packet. Alternatively, the receiver can maintain only
an in-order list and discard without explicitly acknowledging any data
packets received out of order; the sender will dutifully retransmit these
data packets according to the retransmission on time-out procedures.

The receiver has an explicit mechanism—setting the value of
CDT—for controlling the number of transport protocol data units it is
expected to be able to receive at a given time. The receiver can increase
or decrease credit (open or close the send window) as necessary to exer-
cise some control over the way its local resources are used. Suppose, for
example, that a transport implementation has 64K of buffer space. If a
maximum packet size of 1K is negotiated for a transport connection, a
theoretical credit of 64 is available; anticipating that multiple transport
connections to multiple destinations may be established, an implementa-
tion may allocate an initial credit of 8 for up to eight transport connec-
tions, then reduce the credit for all transport connections as additional
transport connections share the buffer space. (It is expected that some
rational value for the maximum number of concurrent transport connec-
tions is applied in all implementations; certainly, here, the value must be
less than 65!)

Like data packets, acknowledgment packets can also be lost, duplicated,
corrupted, or delivered out of order. Failing to correct these errors for
data packets will corrupt user data; failing to correct these errors for

334

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Transport Protocol
Data Unit
Concatenation—
Piggybacking
Acknowledg-
ments, ISO-style

acknowledgment packets will cause the transport protocol to misbehave.

Lost or corrupted acknowledgment packets are recovered as part of
the retransmission or window resynchronization processing. Acknow-
ledgment packets are retransmitted when a data packet is received that
contains a sequence number outside the send window (lower than the
lower window edge or greater than the upper window edge) or when the
window timer expires (see “Timers and Open Transport Protocols,” later
in this chapter). It is also important to be able to determine whether an
acknowledgment packet is a duplicate or an indication of a new credit
value (a window update). Acknowledgment packets thus often have a
subsequence number encoded in the variable part of the transport protocol
header. This number is used to order acknowledgment packets to ensure
that the same credit value is used by both the sending and receiving par-
ties (i.e., that both have the same understanding of what the window
looks like).

To improve protocol performance, especially in multiplexing scenarios,
OSI TPs may group multiple transport protocol data units into a single
NSDU. The rules are straightforward: any number of acknowledgment,
expedited acknowledgment, reject, error, or disconnect confirmation
packets from any number of transport connections may be prepended to
a single connect request, disconnect request, connect confirm, data, or
expedited data packet; i.e., only one packet from the latter set may be
present, and it must be the last transport protocol data unit in the NSDU.
In the case of TP4, the most common occurrence of concatenation is likely
to be that of a single acknowledgment packet with a data packet for the
same transport connection (see Figure 12.16). For TP2 and TP4 over a net-

An acknow edgnent and
/ data TPDU fromt he sane
(onl y)connecti on

AK TPDU DT TPDU

Known | engt h Vari abl e engt h :cfkfnovd edgnents from2
\ . / i ff erenttransport connect i ons
Asi ngle NSDU (0 and 1) and a data TPDU from

connecti on0

AK (TPDU AK TPDU DT o TPDU
\ Known | engt h Known | engt h Vari abl & engt h
A si ngl e NSDU
FIGURE 12.16 Examples of TPDU Concatenation

THE TRANSPORT LAYER 335

work connection, concatenation has additional benefits: one can, for
example, concatenate acknowledgments from different transport connec-
tions with a single data packet, send a single large NSDU, and save
“turnaround time.” Compared to the TCP piggyback mechanisms, in
which one need only set the TCP acknowledgment AK flag to true and
populate the TCP acknowledgment sequence number, this admittedly is
overhead and overkill—another demonstration that flexibility costs.

Data Transfer in TCP—More of the Same

TCP’s name for retransmission on time-out is positive acknowledgment and
retransmission. Mechanisms exist in TCP for detecting and correcting the
same set of errors as in TP4. What distinguishes TCP from TP4 in data
transfer is encoding rather than functionality; for example:

« TCP transfers octet streams, not fixed blocks of user data. The 32-
bit sequence number in a TCP segment represents the number of
the octet in the stream, not the number of the TCP packet.

+ The TCP acknowledgment number indicates the next expected
octet, as opposed to the next expected TCP segment.

+ The acknowledgment flag may be set to true to indicate that the
acknowledgment sequence number (and window) is significant in
data segments in the return stream (piggybacking).

e The 16-bit TCP window indicates in octets the amount of data the
receiver is willing to accept in the next TCP segment(s); this value
is added to the acknowledgment sequence number to determine
the send window. Thus, window is TCP’s octet equivalent of TP4’s
credit.

» A push bit in the code field of the TCP segment may be used to
decrease delay; i.e., its use overrides TCP’s attempt to fill a maxi-
mum segment sized packet before sending. (Although it can be
misused, push is not intended to be a delimiter of segments as is
OSI's EOT bit.)

Figure 12.17 depicts two TCP scenarios—successful transfer with pos-
itive acknowledgment and loss followed by retransmission. Many of the
sender and receiver responsibilities and strategies described for TP4 were

336 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

SEND

| Dat asegment, sequence no. 71|

/

Runretransm ssiontim

Send — Recei ve

Runretransm ssiontim \

| Dat asegnent, sequenceno. 2z

mz —

(O user B 's ACKno. 713

‘ Bl ack coul dhavebeenl ost)
Hol e,

™~

Dat asegnent, sequence no. 7:| RECEI VE

Ret ransmi ssi onti mer
v expi res; SENDagai n

Runretransm ssiontim
* -y ACK no. 1225
/

FIGURE 12.17 Data Transfer, TCP-style

derived from the operation of TCP, so these will be familiar to readers.

The sending TCP entity collects data from the upper-layer protocol
process and sends those data “at its convenience” (seriously, that's what
RFC 793 says . . .). Typically, the sender attempts to fill a maximum seg-
ment size (MSS) packet before sending (unless a PUSH is invoked). The
default maximum segment size is 536 octets, which allows for a standard
TCP header and 512 octets of user data and fits neatly into the default IP
packet of 576 octets, assuming an IP header of 40 octets (RFC 879).

The sending TCP entity runs a retransmission timer for each TCP
data segment. If the retransmission timer expires and no acknowledg-
ment packet has arrived indicating successful delivery of the segment to
the receiver, TCP assumes the data segment is lost, arrived corrupted, or
was misdelivered; resends the data segment; and restarts the retransmis-
sion timer for this segment. RFC 793 suggests two resend strategies: if
the retransmission timer expires, TCP may resend the next unacknowl-
edged segment (“first-only” retransmission), or it may resend all the data
segments on the retransmission queue (“batch” retransmission).

The receiving TCP entity may apply one of two acceptance strate-
gies. If an “in-order” data-acceptance strategy is used, the receiving TCP

THE TRANSPORT LAYER 337

entity accepts only data that arrive in octet-sequence order and discards
all other data. The receiving TCP entity returns an acknowledgment to
the sender and makes the octet stream available to the upper-layer proto-
col process as it arrives. If an “in-window” data-acceptance strategy is
employed, the receiving TCP entity maintains segments containing
octets that arrive out of order separately from those that have arrived in
order and examines newly arrived data segments to determine whether
the next expected octet in the ordered stream of octets has arrived. If so,
the receiving TCP entity adds this segment’s worth of octets to the end of
the octet stream that had previously arrived in order and looks at the
out-of-order stream to see whether additional octets may now be ap-
pended to the end of the in-order stream. The TCP entity returns an
acknowledgment and makes the accumulated stream of in-order octets
available to the upper-layer protocol process.

An explicit acknowledgment is returned in a TCP segment (poten-
tially “piggybacked” with data flowing in the opposite direction). The
acknowledgment sequence number X indicates that all octets up to but not
including X have been received, and the next octet expected is at
sequence number X. The segment window indicates the number of octets
the receiver is willing to accept (beginning with sequence number X).
Acknowledgment packets reflect only what has been received in se-
quence; they do not acknowledge data packets that arrived successfully
but out of sequence.

When an acknowledgment packet arrives, the sending TCP entity
may choose to resend all unacknowledged data from sequence number X
up to the maximum permitted by the segment window. In theory, apply-
ing the “batch” retransmission strategy results in more traffic but possibly
less delay. The sending TCP entity may resend only the data segment
containing the first unacknowledged octet. This negates a large window
and may increase delay, but it is preferred because it introduces less traf-
fic into the network. Batch retransimssion strategies are generally regard-
ed as bad ideas, since their excessive retransmission of segments is likely
to contribute to network congestion.

Window Considerations for TP4 and TCP

Managing the send and receive windows is critical to the performance of
OSI and TCP networks. Every network has a finite forwarding capacity,
and absent constant monitoring of network “busy-ness,” transport enti-
ties can easily submit packets faster than the network can forward and

338

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

deliver them, even if they are all dutifully abiding by the windows adver-
tised for their respective transport connections (this is simply a case in
which the sum of the advertised windows exceeds the capacity of the net-
work). Networks that become too busy or congested do unkind things
such as discard packets. Since congestion has the undesirable effect of
causing retransmission (either because delays increase and transport enti-
ties presume loss and retransmit or because the network is in fact discard-
ing packets due to congestion) and retransmission results in delay, it is
important that transport implementations try their best not to retransmit
unless they are very sure they must. On the other hand, too much caution
will also cause delay; an overly conservative retransmission timer will
wait too long before causing genuinely lost packets to be retransmitted.
The trick, evidently, is to wait long enough, but not too long.

A number of different mechanisms are available to deal with this
conundrum, most of them applicable to both TCP and TP4. One of the
most successful is called “slow-start” (Jacobson 1988). Slow-start is a sim-
ple mechanism and follows a simple philosophy: as new transport con-
nections are established, they shouldn’t upset the equilibrium that may
exist in a network by transmitting large amounts of data right away. In
other words, transport connections should not be opened with large win-
dows (or credits); rather, the window (or credit) should initially be small
and should grow as evidence of the network’s ability to handle more
packets is returned in the form of acknowledgments for each packet sent.
Slow-start recognizes that a receiver advertises a window or credit of a
certain size based on the receiver’s ability to handle incoming packets,
which is closely related to the availability of buffers and processing
cycles at the receiver but has nothing whatsoever to do with congestion
in the network. It does not follow, therefore, that the most appropriate
strategy for the sender is to immediately fill the window offered by the
receiver; the sender must also take into account the effect of its behavior
on the network.! Slow-start couples flow control (ensuring that a sender

19. A variation of the familiar “tragedy of the commons” applies to the behavior of
hosts sending traffic into an internetwork, since most of the algorithms that have been
devised for congestion avoidance and control in internetworks depend on a “good network
citizen” collaboration among host transport protocol implementations to globally maxi-
mize the traffic that can be handled by the network without congestion collapse. An
unscrupulous host can attempt to take advantage of its well-behaved neighbors by deliber-
ately sending traffic into the network at a rate that would produce serious congestion but
for the willingness of other hosts to “back off” as the overall network load rises. This prob-
lem has been addressed by a combination of legislation (the Internet standards require, for
example, that all Internet TCP implementations use Jacobson’s slow-start algorithm) and
negative reinforcement (operating the internetwork in such a way that “selfish host

THE TRANSPORT LAYER 339

does not send faster than its receiver can receive) with congestion control
(ensuring that the traffic generated by all senders does not overwhelm
the capacity of the network).?

A transport implementation using slow-start maintains two win-
dows that govern the rate at which it sends packets: the normal “usable”
window (the difference between the window or credit offered by the
receiver and the amount of outstanding [unacknowledged] data that are
already in the window) and a separate “congestion” window, which is a
running estimate of how much data can be sent without congesting the
network. The transport protocol then uses the congestion window, rather
than the usable window, to control the rate at which it sends new data.
(Correct operation of the transport protocol requires, of course, that the
size of the congestion window never exceed the size of the usable win-
dow.)

Slow-start divides the lifetime of a transport connection into “phases.”
The first phase begins when the connection is established. The conges-
tion window at the beginning of a phase is always set to 1 packet (for
TCP, this is the maximum segment size; for OSI transport, 1 transport
protocol data unit); thereafter, as long as no packets are lost, the conges-
tion window is increased by 1 packet every time an acknowledgment
packet is received, subject to an upper bound of either the current usable
window (which the congestion window must never exceed) or the cur-
rent “slow-start threshold” (which is half the value of the congestion
window at the end of the previous phase). This has the effect of opening
the congestion window rapidly?! until a threshold (or absolute upper
bound) is reached or a packet loss occurs (which suggests that the win-
dow may have been opened too far).

The detection of a packet loss, which triggers retransmission of the
lost data, ends a phase. The next phase begins with the congestion win-
dow back at 1 and a new slow-start threshold of half the congestion-win-
dow value that was in effect when packet loss terminated the previous

behavior is punished—for example, by using “fair queuing” in routers, so that individual
hosts see the effects of congestion [dropped packets and increased transit delay] caused by
their own traffic as well as by the total traffic load on the network).

20. It is important to understand that flow control is strictly an element of the host-to-
host transport protocol (in which the network does not participate), whereas congestion
control has both host-based and network-based elements.

21. The congestion window value grows exponentially during this part of the slow-start
procedure, since every time a window of N data packets is sent, N ackowledgments are
received in return, increasing the window by N (1 for each acnowledgment); starting at N =
1, the progression (assuming there is no packet loss)is 1,2,4,8

340

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

phase.?? This “be more conservative next time” strategy, which halves the
maximum congestion window every time a packet is lost, would by itself
eventually shrink the window to 1 packet—solving the congestion prob-
lem, to be sure, but also reducing the transport protocol to an inefficient
send-and-wait mode of operation. To avoid this, slow-start is paired with
a strategy that Jacobson (1988) calls “congestion avoidance,” which
allows the congestion window to grow past the threshold—but much
more slowly. After the congestion window has reached the slow-start
threshold, it is incremented by its reciprocal (rather than by 1) each time
an acknowledgment packet arrives.

The slow-start/congestion-avoidance algorithm has been widely
implemented in TCP but has only recently found its way into TCP’s
counterpart in OSI, TP4. In OSI networks based on TP4 and the connec-
tionless network protocol CLNP, it is also possible to detect and signal
network congestion by using the congestion experienced flag in the QOS
Maintenance field of the CLNP header (see Chapter 13) and the base
credit-management and retransmission strategies on the work of Raj Jain
(1985, 19864, 1986b, 1990); in fact, Jacobson’s congestion-avoidance strate-
gy is nearly identical to Jain’s, which differs primarily in its use of a
smaller window-shrinking factor when congestion is signaled.

OSI’s Expedited Data

OSI transport expedited data is an entirely separate data flow packet. It is
not subject to normal data flow control and has its own packet type,
acknowledgment, and sequence space (see Figure 12.18). In theory, trans-
port expedited data is used when user data of great urgency must be
transferred. Expedited data reminds one of the childhood practice of cut-
ting ahead in line: an expedited data packet is placed at the head of the
outbound queue, and although it is not expected to overtake any previ-
ously submitted data packets, it must be delivered before any data pack-
et is submitted after it. Expedited data can cut in line, but it may not real-
ly be processed with the urgency it expects and may well end up being
transferred no more quickly than if it had been submitted as normal data.

Expedited data is highly constrained. Only one expedited data packet

22. The actual formula for calculating the new threshold value is not really as simple
as “half the old threshold,” but it is close enough for the purposes of this discussion. Not
all the details (such as doubling the value of the retransmission timers for unacknowledged
packets waiting in the window when a phase-ending packet loss occurs) are covered here;
implementers should see Jacobson (1988) and Zhang (1991).

THE TRANSPORT LAYER 341

1 2 3, 4 5-8 9-p
L ED |DpsT-rer | ED TPDUAR | Variable
and ECT part

\

Sequenceno. of next
expect ed ED TPDU
ECT al ways set to1

Type code = 0001,
| ow or der ni bbl e = 0QC

Checksum
I denti fi esrequest edTCat
remotetransportentity
1 2 3, 4 5-8 9-p
L EA |DST- REF YR- TU- NR Vari abl e
part
Type code.z 0001, Sequenceno. of ED
| ow or der ni bbl e = 00 .
TPDU bei ng Checksum

acknow edged

I denti fi esrequest edTCat
renotetransportentity

FIGURE 12.18 ED and EA Transport Protocol Data Units

may be outstanding (unacknowledged) at a time; each expedited data
TSDU maps onto a single expedited data packet (EDT PDU) and it can be
used only to transfer 16 weenie little octets.”> Another curious bit of pro-
tocol encoding is the presence of an EOT bit that is always set to 1.

TCP’s Urgent Data

TCP’s notion of urgent data is somewhat more flexible. TCP allows an
upper layer protocol to mark data in the stream as urgent for the receiver.
The sender TCP does so by setting the URG bit in the code field of the

23. The 16-octet limit to user data in expedited data packets is a consequence of attempt-
ing to map expedited data packets at the transport layers onto a single X.25 interrupt pack-
et, which offers only 32 octets of user data at the network layer. Substract the maximum
protocol overhead of an expedited data packet (16 octets), and only 16 octets remain for
user data.

342

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TCP segment to 1, indicating that the URGENT field is significant. The
value of the URGENT field represents the number of priority delivery
octets in this TCP segment (and perhaps in subsequent segments, if the
number of octets in this segment is less than the value of the current
field). This value is added to the segment sequence number to assist the
receiver TCP in identifying the last octet of urgent data. When the TCP
segment containing the URG bit arrives, the receiver TCP notifies the
upper-layer protocol that urgent data are coming. Although not explicit-
ly stated in RFC 793, it is assumed that the upper-layer protocol will
begin processing the urgent data; when the last octet of urgent data
arrives, the receiving TCP delivers the urgent data in the TCP segment
and notifies the upper-layer protocol that normal data transfer has
resumed. (It has been suggested that the urgent data capability is rough-
ly equivalent to the session layer’s activity interrupt or capability data ser-
vices. Some say this is a stretch.)

Timers and Open Transport Protocols

The most fundamental thing you can say about TP4 and TCP is that they
are timer-based: to operate correctly, both protocols rely on the certainty
that either an expected event will occur or a timer will expire. This char-
acteristic is responsible for the robustness and flexibility of both of these
protocols. The dependence on timers, however, means that the perfor-
mance of TP4 or TCP is highly sensitive to the choice of timer values and
to the way in which the values of different timers are related. It’s not ter-
ribly difficult to choose reasonably good (initial) timer values or to build
implementations that can dynamically adjust them, but the consequences
of choosing bad values, or building implementations that either cannot
adapt or adapt inappropriately, are much more serious with TP4 and
TCP than they are with protocols that do not depend as heavily on
timers.

The OSI transport protocol specification provides rudimentary
guidelines for establishing initial values for some of the many timers that
transport class 4 relies on for correct operation. If network-service behav-
ior were uniform and stable, these guidelines might be sufficient. Unfor-
tunately, the behavior of real-world networks is anything but uniform
and stable. The practice of adjusting timer values to react correctly to
change in the behavior of networks is fundamental to correct and effi-
cient transport implementations, be they OSI TP4 or TCP. What must be
taken into consideration for many of these timers is described in a gener-

THE TRANSPORT LAYER 343

Retransmission
Timer

al way in the following subsections and is, for the most part, applicable
to all retransmission and timer-based transport protocols.

Almost every TP4 packet (or TCP segment) must be either explicitly or
implicitly acknowledged. When a transport packet is first assembled and
transmitted, it is associated with a retransmission timer. If the expected
acknowledgment of the packet is not received before the timer expires,
the packet is retransmitted and the timer is restarted (using either the
same or a different value for the time-out period); when the acknowledg-
ment is received, the timer is canceled. Until the acknowledgment is
received (or the transmission attempt is abandoned after “too many re-
tries”), the sending system must retain enough information to be able to
retransmit the original packet if necessary. Dealing with timers and
timer-generated events and holding information about packets for some
period after they have been sent represent a significant load on the
resources of a TP4 or TCP-based system. One of the most important
goals of an efficient transport protocol implementation is therefore to
minimize this overhead.

The basic problem with retransmission timers is choosing the right
time-out interval. An overly sensitive timer will cause the unnecessary
retransmission—duplication—of packets that were in fact received and
acknowledged correctly; a sluggish timer will respond too slowly to the
actual loss of a packet or its acknowledgment, increasing the delay asso-
ciated with error detection and recovery. Ideally, a retransmission timer
should expire only when it is actually the case that a packet or its ac-
knowledgment has been lost or discarded. In practice, however, there is
no way to be certain whether or not this has happened—that’s why the
timers are there.

The realistic goal is to pick (or dynamically approach) a time-out
interval that allows the protocol to recover quickly when a packet has
been lost (the timer value must not be too large) but reduces below some
acceptable threshold the number of occasions on which a packet that was
in fact correctly received is retransmitted because the acknowledgment
did not arrive before the expiration of the time-out interval (the timer
value must not be too small). In any environment in which the loss or
corruption of packets is not a rare occurrence, the performance of TP4
and TCP is extremely sensitive to these timer values.

The internet over which TP4 and TCP operates may contain paths
with very different delay and throughput characteristics, which may
change dramatically during the lifetime of a transport connection, and
the timer-based behavior of the transport implementation at the other

344

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Choosing and
Adjusting
Retransmission
Timer Values

end of a transport connection cannot be completely predetermined. Be-
cause of this variability, one cannot simply pick an “average” value for
any retransmission timer (except in very limited, static configurations);
there will always be configurations in which the protocol will not operate
at all with such a static value, much less operate efficiently. These timers
must adapt dynamically to the actual, observed (or inferred) delay char-
acteristics of each individual transport connection.

The timer-value problem has two parts. To maximize performance,
the interval between the initial transmission of a packet and its first
retransmission should be tuned as finely as possible, with an adaptive
granularity small enough to keep the value close to its theoretical ideal.
To ensure that the protocol will nevertheless operate correctly when the
attempt to maximize performance leads to the choice of a much-too-small
initial timer value for the connection-establishment phase and to allow it
to cope with sudden, relatively large transient or persistent changes in
end-to-end delay during the data-transfer phase, the interval must be
increased for the second and subsequent retransmissions (when neces-
sary) in such a way that a sufficiently large interval is allowed to expire
before the transmission attempt is deliberately abandoned (“too many
retries”).

If it were possible to periodically measure the actual end-to-end delay
between two transport connection endpoints, the corresponding retrans-
mission timer values could be adjusted up or down accordingly. Unfor-
tunately, TP4’s normal data packets and their acknowledgments cannot
always be used for delay measurement, since a single acknowledgment
packet can acknowledge more than one data packet, and the use of a
selective acknowledgment strategy by the receiver can artificially skew
round-trip delay measurements. TP4 expedited data packets, which must
be acknowledged immediately and individually, could be used for this
purpose, but the expedited data option is not always selected, and even
when it is, there is no guarantee that expedited data will flow regularly
enough (or in some cases, even over the same path) to provide the neces-
sary dynamic delay information.

Although it is not feasible to obtain a direct measurement of end-to-
end delay, the first part of the timer-value problem can be solved suc-
cessfully by using a trial-and-error technique that adjusts the timer value
based on observed retransmission behavior: crank the retransmission
time-out interval down until the number of retransmissions per measure-
ment interval starts to climb and then gently bump the time-out value
back up until the number of retransmissions drops just below some

THE TRANSPORT LAYER 345

acceptable threshold. When the number of retransmissions rises above
the threshold, the retransmission interval is increased; when it drops
below the threshold, the interval is decreased. The goal is to maintain an
equilibrium just below the threshold.?*

This “adaptive retransmission” scheme assumes that “false” re-
transmissions caused by a too-short retransmission time-out interval can
be distinguished from “real” retransmissions caused by the actual loss of
data packets—that when the retransmission interval is reduced below a
certain threshold, the resulting increase in the number of “false” retrans-
missions will be detectable against the fluctuating background of “real”
retransmissions. Since there is no objective way to determine whether
any individual retransmission is “real” or “false,” this scheme depends
on recognizing patterns in the observed retransmission behavior that can
be related to deliberate adjustments of the retransmission time-out inter-
val. The basic technique, described earlier, is simply to raise the time-out
value when the number of retransmissions increases and lower it when
the number of retransmissions decreases, in an attempt to keep the num-
ber of retransmissions at some “optimal” level (the threshold).

For most real-world configurations, this basic technique is much
too simplistic. It works only if changes in round-trip delay are the only
significant cause of changes in the number of retransmissions per mea-
surement interval; the “threshold” number of “real” retransmissions
must be known in advance and must not change significantly. Even
when these conditions are met, the retransmission timer value will oscil-
late whether or not the retransmission behavior changes, unless a longi-
tudinal damping function is used to stabilize it. There are a number of
ways to improve the basic adaptive retransmission scheme. A smooth-
ing function that accounts for recent history (one or two measurement
intervals back) can be used to damp oscillation of the time-out value
around the threshold. A simple first-order smoothing function might
operate to ensure that the time-out value is adjusted only when a change
in retransmission behavior has persisted for two or more consecutive
measurement intervals. A second-order function (which accounts for
changes in the rate of change of the number of retransmissions) can be
used to damp oscillations even further, depending on how widely the
number of “real” retransmissions is expected to fluctuate and on how
firmly these oscillations must be damped to provide acceptable perfor-

24. Although they are discussed separately in this chapter, the dynamic adjustment of
retransmission timers and the sliding window flow-control strategy (introduced earlier)
will be closely coupled in any actual transport protocol implementation.

346

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

mance. No damping function, however, can prevent performance-killing
inflation of the re-transmission time-out interval or of the “threshold”
number of retransmissions that are interpreted as “real” (and therefore
acceptable).

Consider, for example, the following scenario. A change in the char-
acteristics of the end-to-end path over which packets are flowing causes
an increase in the number of packets that are lost and/or corrupted; this
causes a corresponding increase in the number of packets that must be
retransmitted. These are “real” retransmissions, but neither of the trans-
port protocol machines involved has any way of knowing this; as far as
they can tell, the observed increase in the number of retransmissions
might just as well be caused by premature expiration of the re-transmis-
sion timer due to an increase in the end-to-end transit delay. If this condi-
tion persists, the retransmission time-out will be adjusted upward until
the number of retransmissions per measurement interval stops increas-
ing (if the condition disappears fast enough, and the number of retrans-
missions drops back to its former level within the granularity of the
damping function, the retransmission time-out will not be changed). The
increase in the number of retransmissions had nothing to do with the
value of the retransmission timer, but the adaptive retransmission algo-
rithm thinks that its action in raising the time-out value is responsible for
halting the increase in the number of retransmissions (because when the
time-out interval was raised, the increase in the number of retransmis-
sions stopped—Piaget would love this algorithm). If the algorithm’s
analysis goes no further than this, the time-out interval will stabilize at a
new (higher) value and will be driven back down only if the number of
retransmissions starts to decline. Just when efficient retransmission
behavior is most important (to minimize the adverse effects of the
increase in the number of lost and /or corrupted packets), the retransmis-
sion time-out interval is inflated, increasing the time it takes the protocol
to recover from errors. This is not good.

In principle, the retransmission time-out interval should be adjusted
only to account for changes in transit delay; changing the time-out inter-
val will not affect the number of retransmissions that are due to other
causes (such as a change in the number of lost or corrupted packets). But
because it is not possible to distinguish “real” retransmissions (due to
loss and/or corruption of packets) from “false” ones (due to premature
retransmission timer expiration, caused by a mismatch between the time-
out value and the actual end-to-end transit delay), the inflation just
described cannot be prevented. It can, however, be corrected after it has
occurred by making the basic adaptive retransmission algorithm more

THE TRANSPORT LAYER 347

sophisticated. When the number of retransmissions per measurement
interval changes spontaneously, the algorithm has no choice but to
change the retransmission timer value accordingly (damping small oscil-
lations). When the number of retransmissions is stable, however, the
algorithm can deliberately alter the retransmission time-out: increase it
to see whether the number drops or decrease it to see whether the num-
ber rises. By periodically challenging a stable timer value, the algorithm
can correct inflation of the time-out interval and can also correct a too-
short time-out interval that is producing an unnecessarily high (but sta-
ble, and therefore unprovocative) number of retransmissions.

Adapting retransmission timer values to cope with variable delay is
certainly not unique to OSIL; it has been observed and managed in TCP
networks for many years. In RFC 793, it is recommended that the
retransmission time-out be based on round-trip time (RTT), which is com-
puted by recording the time elapsed between sending a data segment
and receiving the corresponding acknowledgment and by sampling fre-
quently. The algorithm used to compute the round-trip time is:

snoot hedRoundTri pTi ne = (&* ol dRoundTri pTine) + ((1 — &) *newRoundTri pTi ne)

where &, a weighting factor, is selected such that 0 <& < 1.

A small & responds to delay quickly; a large &, slowly. The time-out
value should be greater than the round-trip time but within reason; for
example:

time-out = m ni mun{ upper Bound, 3* snmoot hedRoundTr i pTi ne)
where 8, a delay variance factor, is selected such that 1.3 <8 < 2.

Some deficiences have been identified and corrected in this initial
algorithm. Karn and Partridge (1987) observed that retransmitted seg-
ments cause ambiguities in the round-trip time computation; specifically,
if the sender cannot determine whether the acknowledgment corre-
sponds to an original data packet or a retransmission, it cannot deter-
mine the correct round-trip time for that packet. The Karn/Partridge
algorithm computes the round-trip time only for packets that are not
retransmitted and increases the retransmission timer by a multiplicative
factor (2 is suggested) each time a segment is retransmitted.

Further study showed that limiting £ in the manner described in
RFC 793 will fail if delays vary widely, and Jacobson (1988) proposes
that estimates for both the average round-trip time and the variance
should be provided and that the estimated variance be used in place of 8.
These algorithms work as well in TP4 implementations as in TCP imple-
mentations.

348

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Connection-
Establishment
Timers

Data
Retransmission
Timer Value

During OSI transport connection establishment, two timers govern the
re-transmission of the connect request and connect confirm packets.
These packets are sent out before there has been any opportunity to
observe or infer the end-to-end round-trip delay; and in general, no reli-
able “pregenerated” information about the probable delay to a given des-
tination is available (although when it is, it can be used to guide the
selection of initial CR and CC timer values). The end-to-end delay over a
single subnetwork (link) might be anywhere from 1 or 2 milliseconds (for
a LAN) to 250 milliseconds (for a satellite link), and there could be almost
any number of these links, in various combinations, in the actual end-to-
end path. The round-trip delay also includes processing time in the two
end systems and in an unpredictable number of intermediate (gateway)
systems. Under these circumstances, the probability of correctly guessing
the optimal timer value (or even something acceptably close to it) is very
small.

There is an alternative to simply picking a timer value at random.
As long as the retransmission interval is increased substantially for sec-
ond and subsequent retransmissions (when necessary), a very small ini-
tial time-out value (on the order of 250-500 milliseconds) can be used.
This will give good performance when the actual delay is small (and con-
figurations with small end-to-end delay are precisely the ones in which
high performance is likely to be most important). The possible unneces-
sary retransmission of one or more connect request or connect confirm
packets when the actual delay is larger than the small initial value chosen
for the timer is usually acceptable, occurring as it does only during the
connection-establishment phase. Incrementally backing off the retrans-
mission timer each time it expires (using, for example, a 500-millisecond
increment) and setting the “maximum number of retries” threshold fairly
high (at 15, for example) can ensure that very few (if any) connection-
establishment attempts are abandoned (timed out) prematurely (see
“Backing Off for Subsequent Retransmissions,” later in this section).

A simple way to pick a starting value for an adaptive data packet re-
transmission scheme is to measure, during the connection-establishment
phase, the delay between sending a connect request and receiving the
corresponding connect confirm (or at the other end, between sending a
connect confirm and receiving the corresponding acknowledgment or
first data packet). Because the connect request and/or connect confirm
packets may be retransmitted, and because processing delays associated
with connection establishment are usually greater than those associated
with normal data flow, this value cannot be used as a constant for the

THE TRANSPORT LAYER 349

Backing Off for
Subsequent
Retransmissions

data packet retransmission time-out value; it is likely to be accurate
enough, however, to ensure that an adaptive retransmission algorithm
quickly converges on a satisfactory value. An adaptive retransmission
scheme is most useful either when no prior information about the round-
trip delay variance is available or when the available information sug-
gests that the delay variance could be large. When it is possible to expect
that the delay variance will be relatively small, better performance can be
obtained from a well-chosen constant value for the data retransmission
time-out value, based on a slight overestimate of the expected maximum
round-trip delay (this is especially true for operation of TP4 over a net-
work connection). The retransmission timer associated with expedited
data packet can be managed in the same way as the timer associated
with normal data packets.

No matter how cleverly the initial value for a retransmission timer is
chosen, there will be circumstances in which the timer expires, the asso-
ciated packet is retransmitted, and the timer must be reset. A simple
approach to choosing a new timer value is to reuse the initial value. This
approach will produce a series of retransmissions at evenly spaced inter-
vals, which will terminate when the retransmission timer is canceled by
the arrival of an appropriate acknowledgment or the maximum number
of retries is reached. If the initial time-out value is not too far off the
mark, or the maximum number of retries parameter is very large, this
approach will work. If the initial time-out value is much too short, how-
ever, either the maximum number of retries will be exhausted before any
acknowledgment has had time to arrive, or a large number of unneces-
sarily retransmitted packets will be pumped out of the sending system
before the acknowledgment arrives. In the former case, the transport
connection or connection-establishment attempt will be aborted when
the sender’s give-up timer expires (the value of the give-up timer
depends on the retransmission timer value and the maximum number of
retries, as discussed in the following subsection). In the latter case, adap-
tation of the initial time-out interval (as described earlier) will eventually
correct the problem for data packets, but the situation will persist for
connect request and connect confirm packets, for which no adaptive
adjustment of the retransmission timer value is possible.

Using an equal-interval approach to retransmission constrains the
choice of an initial retransmission timer value: if the two pathological sit-
uations just described are to be avoided, the time-out interval cannot be
reduced below a certain “safety threshold.” In configurations in which
the mean transit delay is low but the delay variance is relatively high,

350

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

this constraint limits the effective performance of the protocol.?

An algorithm that backs off geometrically for each retransmission
rather than linearly eliminates this constraint. When a packet is first
transmitted, the corresponding retransmission timer is set to the appro-
priate initial value for that packet (which is either a constant, for connect
request and connect confirm packets, or a dynamic value determined by
an adaptive retransmission scheme, for data packets). If this timer ex-
pires, the packet is retransmitted, and the retransmission timer is set to a
value that is the sum of the initial value and a fixed increment (the “back-
off” increment). If this timer expires, the packet is again retransmitted,
and the retransmission timer is set to a value that is the sum of the initial
value and twice the back-off increment. This continues until the timer is
canceled by the arrival of a suitable acknowledgment (or the transmis-
sion attempt is abandoned after “too many retries”). Each retransmission
interval is therefore longer than the one before it. When the retransmis-
sion interval is increased in this way after each retransmission, the partial
sums that represent the accumulated time since the first transmission of a
packet grow geometrically rather than linearly. This allows a transport
protocol to recover quickly from the choice of a too-small initial timer
value, without falling into either of the two traps described earlier. The
initial retransmission interval can be made as small as necessary to
achieve good performance, relying on the geometric algorithm to back
the value off safely if something goes wrong.

For the algorithm just described, the aggregate retransmission time
is a function of the constant parameters for the maximum number of
retries and the back-off increment. Without making the function too com-
plicated, we can also allow the first-retransmission interval to be differ-
ent from the back-off increment. Letting x be the maximum number of
retries, y the interval between the initial transmission of a data packet
and its first retransmission, and z the fixed increment by which the
retransmission time is increased for each retransmission after the first,
we obtain the following formula:

aggregate = y(x + 1) + [zx(x + 1)/2]

Note: The value of y for data packet retransmission will change
dynamically if an adaptive retransmission scheme is used.
As an example, assume an implementation that has chosen x = 5,

25. If the delay variance is low, the probability of either of the two pathological condi-
tions occurring is also low, and the “safety threshold” can be set as low as necessary to
avoid this performance limit.

THE TRANSPORT LAYER 351

Give-Up Timer

y = 500 milliseconds, and z = 1 second. At most, 18 seconds will elapse
between the first transmission of a packet and the expiration of the last
retransmission timer (“too many retries”). This value sets a lower bound
on the value of the give-up timer.

Associated with each OSI transport connection is a “give-up” timer,
which is started (or restarted) whenever the first incarnation of a data
packet is sent out (that is, it is not reset when a data packet is retransmit-
ted, as is the data packet retransmission timer). Whenever an acknowl-
edgment covering all outstanding data packets is received, the give-up
timer is canceled.?

The give-up timer establishes an upper bound on the amount of
time that can elapse between the first transmission of a packet and the
receipt of an acknowledgment that covers that transport protocol data
unit. The expectation of an acknowledgment can remain unfulfilled for
no more than the give-up time-out interval before TP4 decides that its
peer is either dead, disabled, or malfunctioning; if the give-up timer
expires, the corresponding transport connection is torn down.

The give-up timer value should be large enough so that it includes
any reasonable combination of end-to-end processing and transmission
delays (including the maximum number of retransmissions). It must,
however, be less than the value of the reference timer in all other trans-
port protocol machines with which a given implementation will commu-
nicate, to ensure that no retransmission can occur after a remote peer has
decided that it is safe to reuse a transport connection reference (see
“Reference Timer,” later in this section). When, for whatever reason, a
transport protocol machine stops receiving the packets that are being
sent by its peer, the operation of the give-up timer in the sending system
ensures that the sender will not inject a packet into the pipe that might (if
the pipe eventually clears) arrive at the receiver after the expiration of
the receiver’s reference timer.

The value of the give-up timer must be greater than the maximum
aggregate data retransmission time and less than the value of the reference
timer in all other transport systems. In the example described in the previous
subsection, the aggregate data retransmission time is 18 seconds. A typical
reference timer value (again, see “Reference Timer”) is 100 seconds. Within
these bounds, a reasonable give-up timer value would be 40 seconds.

26. Whenever the expedited data option is implemented, there are actually two separate
give-up timers: one for normal data TPDUs and one for expedited data TPDUs. They oper-
ate independently, but in the same way.

352

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Inactivity Timer

Window Timer

On every transport connection, each of the two transport protocol
machines involved must regularly demonstrate both existence and sanity
to its peer, by sending a correctly formed packet. This is true whether or
not the peers have any user data to exchange; in the absence of data flow,
the peers exchange acknowledgment packets in response to the expira-
tion of their window timers (discussed later in this section). The protocol
depends on this “I'm OK, you're OK” form of phatic communion to
maintain connectivity and to detect its loss. Silence, therefore, is an
abnormal (and eventually fatal) condition.

The inactivity timer detects silence. It is started when a connection
is first established and is reset whenever any valid packet is received for
that connection. It expires, therefore, only when a period of silence has
persisted for long enough that the local transport protocol machine must
assume that its peer has either died or become disabled. The expiration of
an inactivity timer results in termination of the corresponding transport
connection.

The value of the inactivity timer is chosen to reflect the most appro-
priate compromise between the desire to keep a sick transport connection
open as long as there is a reasonable hope that it can be revived (within
the “quality of service” constraints, if any, specified by the transport
user) and the desire to recognize a genuinely dead connection as quickly
as possible. Since the value of the window timer is directly related to the
value of the inactivity timer in all other transport implementations, the
inactivity timer value must be chosen carefully.

Whenever there is two-way data traffic on a transport connection, the
corresponding flow of acknowledgments in both directions ensures that
both transport machines have up-to-date window (flow-control) infor-
mation. If data packets flow in only one direction, or if there are no data
packets flowing in either direction (there are no user data to send, or one
or both of the transport protocol machines has closed its receive win-
dow), this information must be exchanged by some other mechanism.
The window timer generates a flow of acknowledgment packets
that depends only on the existence and health of the sending transport
protocol machine; even when there is no need to acknowledge a data
packet, an acknowledgment packet will be sent at regular intervals as the
window timer expires. This serves two essential purposes: it prevents the
remote peer’s inactivity timer from expiring in response to a long stretch
of silence (that is, it convinces the remote peer that its partner is still alive
and well), and it conveys up-to-date window information (credit), which
may change whether or not there is current data traffic. To understand

THE TRANSPORT LAYER 353

Reference Timer

the importance of the latter function, consider that when a receive win-
dow closes, a potential sender—which can’t send into a closed window,
of course, and therefore will not be getting new acknowledgments as a
result of having sent new data—will never learn that the receive window
has reopened unless the receiver sends an “unprovoked” acknowledg-
ment containing a new credit.

Because one of the roles of the window timer is to prevent the expi-
ration of the inactivity timer in a remote peer, its value must be chosen
with respect to the value of the inactivity timer in other transport proto-
col machines. Since acknowledgments, like other packets, can be lost, the
value of the inactivity timer is usually chosen to allow one or two “win-
dow” acknowledgments to be generated and lost without risking expira-
tion of the inactivity timer. A typical value for the window timer allows
for three window time-outs within an interval that is slightly smaller
than the inactivity time-out interval.

When an OSI transport connection is closed (normally or abnormally), a
reference timer is started; until it expires, the local connection reference
number that was used for the old connection cannot be reused for a new
one. The reference timer ensures that a new connection based on a previ-
ously used connection reference number cannot be opened until it is cer-
tain that all packets generated during the lifetime of the old connection
have disappeared.

The reference timer is designed to cope with situations such as the
one described in the following scenario. Two transport protocol ma-
chines establish a transport connection and start exchanging data pack-
ets. At some point, congestion in the path between the two transport
peers causes a data packet (and its subsequent retransmissions) to be
delayed long enough for the give-up timer in the sending transport pro-
tocol machine to expire, terminating the connection. Eventually, however,
the congestion clears, and the packet (and/or one or more of its retrans-
missions) arrives at its destination. If the reference number that was used
for the original transport connection has been reused in the interim to
establish a new connection, the late-arriving packet could be (mis)inter-
preted as belonging to the new connection.

It is important to note that no value of the reference timer is large
enough to guarantee, by itself, that the confusion just described cannot
arise. It is also necessary for the underlying internetwork protocol to
operate in such a way that internetwork protocol data units, which carry
packets, are discarded after a specific “packet lifetime” is exceeded. The
OSI connectionless network protocol includes this function (see Chapter

354

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

13). A local system-management function must ensure that the reference
time-out value associated with each transport connection is greater than
the packet lifetime specified in the network protocol packets that carry
data for that transport connection.

Approximately 216 reference numbers are available for use with
transport connection endpoints associated with a single NSAP (network)
address. Most transport implementations—assuming that even under the
most extreme circumstances, it will take at least a couple of milliseconds
to set up and tear down a transport connection—will use a value of about
27 or 28 seconds for the reference timer. If it is very important to recover
the local system resources dedicated to a transport connection quickly
after the connection is closed, a smaller value will be used. A value of 100
seconds is about the lowest that can be used safely in a general-purpose
implementation.

Connection Release (Connection Refusal) in the OSI Transport

Protocol

There are actually two circumstances that dictate the release of an OSI
transport connection. The first, connection refusal, occurs when the called
transport entity cannot satisfy one or more of the conditions of transport
connection establishment conveyed in the connection request packet, or
when the connect request packet received is in error. To refuse a trans-
port connection, the called transport entity composes and returns a dis-
connect request packet (DR TPDU) (Figure 12.19) containing the reason for
refusing the connection. The expected reasons for refusing a connection
are identified (negotiation failed, reference overflow, transport service
access point address unknown), and several more creative reasons for
refusing a connection are provided (congestion at transport service
access point, session entity not attached to transport service access point).

If the connection is refused due to an inability to parse the connect
request packet, the called transport entity returns an error packet (ER
TPDU), indicating the reason for refusal. This form of connection refusal
typically reflects an error in implementation (e.g., an invalid parameter
or parameter value was encountered) or detection of a bit-level error as a
result of computing the checksum on the connect request packet. All of
the octets of the connect request packet that caused the rejection are
returned in the variable part of the error packet.

Connection release is an extremely mundane phase of operation. To

THE TRANSPORT LAYER 355

DR TPDU
1 2 3, 4 5, 7 8—p
Vari abl e
LI DR DST- REF | SRC- REF | Reason par t
Type code DR = 1000,) o
| ower order = 0000 |Local identifier
this TC
Reason f or
. di sconnect i ng;
O o see 15010
P y 8073: 1992
DC TPDU
1 2 3, 4 5, 6 7-p
Vari abl e
LI DC DST- REF | SRC- REF part

Y

Type code DC = 110qQ, Local i(_jent ifier
| ower order = 000 this TC

I dentifies TCat renot
transportentity

FIGURE 12.19 Transport Protocol Data Units for Connection Release

the degree that one finds transport connections interesting, all of the
interesting things have already occurred: both parties have negotiated
the characteristics of a connection, meaningful information transfer has
taken place, and for those readers old enough to remember, “Now it’s
time to say goodbye . . . to all our com-pah-nee.”?” The process is espe-
cially mundane in the OSI transport protocol since no effort is made to
ensure that all data transmitted in both directions have been acknowl-
edged before the transport connection is released (according to the letter
of the law as prescribed by the OSI reference model, if a graceful or
orderly release is desired, it will be performed by the session layer, when
the orderly release functional unit is selected (see Chapter 11); whether

27. For those too young to remember, these are the first words of the closing song of the
“Mickey Mouse Club” television show of the fifties.

356

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

the functionality implemented at the session layer is equivalent to TCP’s
graceful close is a subject of ongoing debate).

Essentially, OSI transport connection release is a process of abruptly
announcing one’s departure from the conversation: one party—the call-
ing or called transport entity, either as the result of an explicit request by
a transport service user (a T-DISCONNECT.request) or as a local mat-
ter—issues a disconnect request packet (DR TPDU) (see Figure 12.20).
Following transmission (or reception) of the disconnect request packet,
there’s lots of tidying up to do:

+ All timers related to this transport connection are stopped. For TP4,
this may include the retransmission, inactivity, and window timers.

 The receiver composes and returns a disconnect confirm packet (DC
TPDU) (see Figure 12.19) to the initiating transport entity, and noti-
fies the transport user via a T-DISCONNECT.indication primitive.

 Both parties freeze reference numbers (see “Timers and Open trans-
port Protocols,” earlier in this chapter).

Upon expiration of the timer bounding the use of references, the
transport entities consider the transport connection closed.

Connection Release (Refusal) in TCP

The circumstances that dictate the release of an OSI transport connection
exist for TCP as well. Connection refusal occurs in TCP when the respond-
ing TCP entity cannot establish a TCP connection or when the SYN packet
received is in error. To refuse a TCP connection, the called TCP entity
sets the RST and ACK bits in the code field of the TCP packet to 1, and

DR TPDU Ll

ED, AK, or DT TPDU |

i

DC TPDU

|ED, AK, or DT TPDU |

FIGURE 12.20 Connection Release, TP4

THE TRANSPORT LAYER 357

sets the acknowledgment sequence number to the initiator’s ISN, incre-
mented by 1; unlike the OSI transport protocol, no reason for refusing
the connection is indicated in the RST/ACK segment. (A quick examina-
tion of the OSI reason codes suggests that this is no great loss.)

TCP offers two forms of connection release: abrupt and graceful.
Abrupt release indicates that something seriously wrong has occurred.
Again, the RST bit of the code field is set to 1; depending on the current
state of the TCP entity that receives the RST segment, the sequence-num-
ber and acknowledgment sequence number fields may be significant.
Graceful close in TCP is an orderly shutdown process. All information
transmitted in both directions must be acknowledged before the TCP
connection is considered “finished” and may be closed. When an upper-
layer protocol has finished sending data and wishes to close the TCP
connection, the TCP entity indicates this state to its peer by sending a
TCP segment with the FIN bit of the code field set to 1. The sequence-
number field is set to the value of the last byte transmitted. The receiver
of the FIN segment must acknowledge receipt of the last octet but is not
required to close its half of the connection; it may continue to transfer
data, and the initiator of the FIN segment must dutifully acknowledge
all data received until it receives a TCP segment with the FIN and ACK
bits of the code field set to 1 and an acknowledgment number set to the
sequence number of the last octet received from the FIN segment initia-
tor. Upon receiving the FIN/ACK segment, the FIN initiator returns an
ACK segment, completing a three-way “good-bye,” as illustrated in
Figure 12.21.

- =

| FINsegrent, SEQno. 2

2 -
FI N ACK segnent, SEQno. 676, ACKno. 2:

| ACK segment, ACK no. 677| E—

FIGURE 12.21 Graceful Close in TCP

358

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Datagram Transport Protocols—CLTP and UDP

Both OSI and TCP/IP support connectionless (datagram) operation at the
transport layer as an alternative to connections for upper-layer protocols
that do not need the reliability and other characteristics of a transport
connection. The service model is simple unconfirmed best-effort delivery
(see Figure 12.22). Formally, the OSI connectionless transport service
(ISO/IEC 8072: 1993) is supported by the OSI connectionless transport
protocol (ISO/IEC 8602: 1987). Like TCP/IP’s user datagram protocol
(UDP; REC 768), the primary purpose of which is to differentiate user-
level processes identified by the port number, the primary purpose of the
OSI connectionless transport protocol is to differentiate transport service
users identified by the transport service access point identifier of the
transport service access point address.

The differences between the two are unremarkable (see Figure
12.23). OSI connectionless transport supports variable-length transport
service access point addresses, whereas the user datagram protocol sup-
ports 16-bit port numbers. Both provide user data-integrity checks by
means of a 16-bit checksum; in both protocols, if the checksum verifica-
tion fails, the packet is dropped with no indication to the upper layer
process (transport service user).

The user datagram protocol is used to support a number of widely
used applications in TCP/IP networks: Sun’s Network File System/
Remote Procedure Call, the Domain Name System, the Simple Network
Management Protocol, even a routing protocol (the Routing Information

Transport Transport
user user
A B

(1) I'ssue a T- UNI TDATA. r equest

(2) Receive aT- UNI TDATA. i ndi cati on

Transport servi ce provi der

FIGURE 12.22 Connectionless Transport Service Primitives

THE TRANSPORT LAYER 359

Socket Interfaces
to Datagram
Transport
Services

CLTP

Lengt h ub TPDU

indicator | code (0100 00| V2'iablepart Wser data

1octet 1octet (Vari abl e)

Desti nati on TSAP paranet| Destinati on TSAP par anet
code (1100 0010) code (1100 0010) Checksum
Lengthinoctets (1octet Lengthinoctets (1octet
TSAPval ue (vari abl e) TSAPval ue (vari abl e)
[UDP |
So Destinati UDP
urce stinatfo Lengt h User data
port port checksum
2octets 2octets 2octets 2octets (Vari abl e)

FIGURE 12.23 CLTP and UDP Formats

Protocol; see Chapter 14). The OSI connectionless transport protocol is
ostensibly used by OSI connectionless upper layers, but to date, no appli-
cation service elements have been developed to use these. Sun’s
Network File System is run over the OSI connectionless transport proto-
col today, and in dual-stack environments the Simple Network
Management Protocol may be operated over it to manage CLNP-based
networks in those configurations in which the managed agent does not
support the User Datagram Protocol—i.e., those configurations in which
an OSI-only host or router is present in an otherwise dual-stack topology
(RFC 1418). (Network operators may also find it convenient to use the
Simple Network Management Protocol over the OSI connectionless
transport protocol in certain network diagnostic/debugging modes, in
which it is useful to have management information traverse the same
logical topology as data packets.)

In ARGO 1.0 and RENO UNIX, the user datagram protocol and the OSI
connectionless transport protocol are accessed via sockets (type sock-
dgram). The Internet address family is used for UDP, and the ISO address
family for CLTP. Both UDP and CLTP sockets support a best-effort data-
gram service via the sendto and recvfrom system calls. (In certain applica-
tions, the connect() call can be used to “fix” the destination address, and
subsequent packets can be sent/received using the recv(), read(), send(), or
write() system calls.)

360

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Conclusion

The transport layer plays the same critical role in both the OSI and
TCP/IP architectures: it defines the concept of “host” or “end system,” in
which applications live, and distinguishes these end-user hosts from sys-
tems that are concerned only with the “intermediate” functions (routing,
relaying, switching, and transmission) of networking. As it is typically
deployed at a real boundary between facilities belonging to end users
and facilities belonging to the network, transport is the host’s opportunity
to ensure that its applications get the data pipe that they want, regardless
of what the network is prepared to provide. The OSI transport protocol
fudges this a bit by defining classes 0 through 3 in such a way that the
end-to-end reliability seen by applications in fact depends very much on
what the network is able to provide; but class 4, and TCP, support a gen-
uinely network-independent transport service, which can be provided as
reliably over connectionless internets as over connection-oriented net-
works. For applications that do not require the reliability of a transport
connection, OSI and TCP/IP provide connectionless (transport data-
gram) alternatives as separate protocols.

Much has been written about the differences between TCP and the
OSI class-4 transport protocol in an effort to prove that one or the other is
“better.” There is ample fuel for this debate: TCP is octet-sequenced, TP4
is packet-sequenced; TCP has graceful close, TP4 does not; TCP’s port
numbers are fixed at 16 bits, TP4’s are variable-length. The list is long,
but it contains no “killer argument” in favor of either protocol. Readers
interested in pursuing this question will find a convincing argument for
the essential irrelevance of this “which is better?” debate in Chapin (1990).

THE NETWORK LAYER

Like all the other OSI layers, the network layer provides both connection-
less and connection-oriented services. The upper layers and transport
provide these two types of service to satisfy a broad range of application
and end-user needs. This is universally recognized as a “good thing.” In
the network layer, the presence of two types of service is generally con-
sidered to be a “bad thing.” The reason for this is simple: everything
above the network layer is host-specific and can be tailored to suit a par-
ticular application running among some set of mutually consenting hosts
without affecting the communications of other hosts using the same
internetwork; the network layer, however, provides the fundamental
connectivity without which no communication of any kind can take
place among hosts. Most people agree that having one type of service at
the network layer would be preferable to having two; as always, though,
the problem stems from having to decide which one.!

The TCP/IP architecture, which from the beginning was based on
an “internetworking” model of the network layer,? avoided this contro-
versy entirely; the TCP/IP network layer is exclusively connectionless.3

1. There are people who attempt to justify a “diversity of needs” at the network layer,
but their sense of what constitutes interoperability is quite different from ours.
2. The best (and certainly the most succinct) description of the fundamental architec-

tural premise of the TCP/IP network layer is the one that Vint Cerf uses to describe the
TCP/IP internetworking model: “I P on everything.”

3. The requirement to support new types of service in the Internet, such as real-time
service for voice and video, may change the traditional “datagrams-only” model of the
TCP/IP network layer. The new concept of a “flow,” which is neither a connection nor
datagrams, promises to make the TCP/IP network layer a bit more complicated (but also a
bit more useful) in the near future (Partridge 1992).

361

362

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

The issues surrounding a “choose one” decision at the network
layer were of such a highly charged political, economic, and emotional
nature that convergence on a single networking solution for OSI was,
and remains, a pipe dream. Compounding the problem, there is no gen-
erally recognized way to interwork between connection-oriented and
connectionless networks. ISO/IEC 8648: 1987, Internal Organization of the
Network Layer, does not provide a solution; however, demystifying its
contents does provide meaningful insight into the problem, so it is a logi-
cal place to begin.

Architecture: The Internal Organization of the Network Layer

It is virtually impossible to understand the purpose and contents of the
Internal Organization of the Network Layer standard without a historical
perspective. In the abstract, the OSI network layer provides the switching
fabric over which end systems communicate. The notion of a single, open
networking environment for data is a powerful one, since it implies a
very broad scale of connectivity. In fact, it is not hard to imagine (and
even easier to desire) an open data network that is as ubiquitous as the
voice network.

The postal, telephone, and telegraph (PTT) administrations of many
national governments* have long been committed to standards as pro-
cessed for telephony under the CCITT. A strong political incentive existed
at the time of OSI network-layer standards development to institute a
single, uniform network service standard for data. Publicly, advocates of
this network-centric view claimed that a single service, modeled after the
voice network, would scale well—the voice network certainly did. A frame-
work for multiorganizational administration existed for nasty issues like
addressing and interworking. Moreover, they continued, similar service
characteristics could be expected irrespective of the location of the source
and target applications. Privately, these parties hoped that by bringing
computer communications further under the administration of the PTTs,
they would “contracept” further expansion of the private networking
offered by large multinational computer vendors. By so doing, they
hoped to promote the interests of their native (especially European) com-

4. Some countries, including the United States and the United Kingdom, do not have a sin-
gle “national” public network agency. To accommodate these countries, the CCITT consid-
ers that recognized private operating agencies (RPOAs), such as British Telecom and AT&T,
have standing equivalent to the PTTs of countries with national public network agencies.

THE NETWORK LAYER 363

puter vendors and strengthen both their own domestic and international
markets. In short, they hoped to expand the market for public network-
ing services, helping their home computer companies in the process.

OSI network-layer development also began when data communica-
tion was, by today’s standards, in its infancy. Turnkey remote job entry
and terminal-to-mainframe communications were the principal applica-
tions. Local area networks were fledgling and pricey technologies. On-
premises terminal connectivity was achieved by a hodgepodge of largely
proprietary asynchronous “poll-select” technologies, and wide-area
bandwidth was expensive, even for modest kilobit-rate services, so
applications (and end users) were made to tolerate delay. Compared to
even the smallest of today’s regional TCP/IP networks, private network-
ing was a small-scale, predominantly mainframe-to-mainframe enter-
prise, and the wide area network was the center of the universe.

When the price of local area network (LAN) technology dropped,
the “public network is everything” paradigm was shattered forever. On-
premises bandwidth was cheap and plentiful; applications and process-
ing were distributed among large numbers of increasingly powerful yet
smaller computers, initially across local area networks, but soon across
higher-bandwidth wide area services. Thus, two paradigms for network
service—local area network and wide area network—collided precisely
at the time of the development of standards for the OSI network layer.

Renegades from the community of local area network equipment
manufacturers and consumers rose to challenge the network-centric
view of the world. Unlike voice service, they argued, for which the ser-
vice characteristics necessary to support the primary application (speech)
have remained constant for a century, the characteristics of network ser-
vices necessary for computer-to-computer communications vary widely
from application to application. Terminal access to remote computers
requires only low bandwidth and can tolerate delay, whereas networked
file services like Sun’s Network File System (Sandberg 1988) require high
bandwidth and low delay, but only for short periods or bursts. Other
applications (electronic mail, file transfer) have requirements somewhere
between these extremes.

Applications also have varying requirements for data integrity, reli-
ability in data transfer, and other characteristics. The local area network
proponents argued that true distributed applications needed LAN-like
characteristics across a wide area. These can best be provided by adopt-
ing the internetworking protocol concepts demonstrated in the Defense
Advanced Research Projects Agency experiments and deployed in pro-
prietary architectures such as Xerox Network Systems (XNS), Digital

364

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Network Architecture (DNA), and Burroughs Network Architecture
(BNA). Privately, vendors of host computers, routers, and other comput-
er-communications equipment hoped to use OSI as a means of penetrat-
ing hitherto single-vendor “closed-shop” environments held by the
industry giants: in an open platform, smaller, nimbler manufacturers
could compete for market share by specializing rather than offering a
comprehensive micro-to-mainframe line of computers. The industry
giants contributed their proprietary solutions to universal networking
problems in an attempt to ease the inevitable transition. Computer ven-
dors big and small—hereafter referred to as host-centrics—had a common
objective: they wanted a solution that would enable them to sell more
communications as well as host equipment.

The OSI network layer is thus where net-worlds collide. Two substan-
tially different views of the way in which network service should be pro-
vided had been defined. Champions for both causes stepped forward,
lines were drawn in the sand, and battles ensued. The Internal Organiza-
tion of the Network Layer was to become the demilitarized zone of the
"police action” initiated to unify the OSI network layer. Within this stan-
dard, it was expected that differences would be reconciled and a frame-
work for interconnectivity would be defined.

The Internal Organization of the Network Layer began as a microarchi-
tecture document for the OSI network layer. It was to provide a functional
description of the network layer that related the OSI architectural model
of the network layer to the “real-world” networks, switches (routers and
bridges, but also carrier network packet switches), and host computers
that comprised the OSI environment (for a historical perspective, see
Hemrick [1984]). It was gradually transformed into a means of describing
how to retrofit the OSI reference model view of the network layer onto
existing real-world networks.

AE A All discussions concerning “architecture” begin with the seemingly
innocent question, “What is X?” Questions of this nature are the
very essence of why, in many OSI standards meetings, a great deal is said and lit-
tle is done. The 1SO group responsible for producing the Internal Organization
of the Network Layer spent no less than three meetings fine-tuning the defini-
tion of a subnetwork so that all parties could point to their individual “collec-
tion of equipment and physical media which forms an autonomous whole and
which can be used to interconnect real systems for purposes of communication”
(ISO/IEC 8648: 1987) and say, “Now that’s a real subnetwork.”

THE NETWORK LAYER 365

Hop-by-Hop
Harmonization

The Internal Organization of the Network Layer spends lots of time
explaining the real world. Real subnetworks, particularly those that pro-
vide a public service tariffed by a common carrier, have a specific proto-
col that data terminal equipment (DTE) uses to access the packet-switching
equipment of the public network provider; such protocols are called sub-
network access protocols (SNAcPs). Local area network medium access
control (MAC) protocols, accompanied by logical link control (LLC) pro-
cedures and protocol, can also be said to be subnetwork access
protocols.® There are consequently many subnetwork access protocols in
the real world, providing a wide range of subnetwork services; in fact,
creation of subnetwork access protocols is something of an annual event
in the standards community.

Most or all of the subnetwork access protocols used in real-world
subnetworks don’t provide the OSI network service: some functions—for
example, the ability to convey the very long and variable-length OSI net-
work service access point addresses—were neither anticipated nor pro-
vided for in protocols such as CCITT Recommendation X.25-1980 or the
TCP/IP internet protocol (REC 791).

The proposition put forth in the Internal Organization of the Network
Layer is that the (presumably small) discrepancy between the OSI net-
work service and the service provided by each subnetwork can be fixed
by adding functionality to “enhance” the subnetworks and the equip-
ment connecting them (and connected to them) in one of several ways.

One alternative is to pile functions and protocols on top of each individual
subnetwork access protocol, one by one, so that each one is elevated to the
level of the OSI network service. This is a case-by-case solution; hence, the
term hop by hop. This method involves identifying those elements of the
OSI network service that are missing from a given subnetwork access pro-
tocol and adding them. According to this strategy, if subnetwork A could
provide all of the OSI network service features except the ability to signal a
RESET, one could incorporate a RESET capability into subnetwork A’s
subnetwork access protocol, and the enhanced subnetwork A would then
be capable of providing the OSI network service. If another subnetwork,
B, could provide all but the ability to convey OSI network-layer address-
ing, one could extend the addressing capabilities of subnetwork B’s sub-

5. By the time the ISO network-layer committee decided upon the term subnetwork
access protocol, all of the straightforward acronyms containing the letters SNA were taken. In
particular, it was obviously inappropriate to use SNA protocol, and the IEEE 802.1 commit-
tee had only recently devised the logical link control subnetwork access protocol
(LLC/SNAP); hence, it was necessary to include a lowercase ¢ in ISO’s acronym.

366

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Internetworking
Protocol Approach

network access protocol, and the enhanced subnetwork B would then be
capable of providing the OSI network service as well. One could then
plug subnetworks A and B together, and real end systems attached to
subnetwork A could use the OSI network service to communicate with
real end systems attached to subnetwork B.

In the real world, making modifications (“enhancements”) to every
subnetwork access protocol would require changes in far too many end
systems, and end-user reaction to such an effort would be ugly indeed
(Q: “Why did it take God only six days to create the world?” A: “He
didn’t have to worry about the installed base . . .”). Better to pile stuff on
top of a handful of the most important network protocols to make them
support the OSI network service, which is exactly what ISO and CCITT
did. The Internal Organization of the Network Layer prescribes the use of a
protocol between the transport protocol and the subnetwork access proto-
col to convey the missing elements of the OSI network service. As an
example, the ability to carry big addresses was missing from the 1980
version of the X.25 packet-level protocol; specifically, the called and call-
ing address fields of the call request packet were too small to convey
jumbo OSI network service access point addresses. Oh so clever bit-twid-
dlers devised a way to employ the call user data facilities field of the call
request packet to convey OSI network service access point addresses and
other missing elements of the OSI connection-oriented network service,
and thus extend the life of the data circuit-terminating equipment (DCE)
in those public networks in which X.25-1984 availability was not immi-
nent. Since the use of this particular technique was unique to X.25-1980,
and similar techniques could be devised to operate over other existing
subnetwork access protocols with shortcomings, the notion of a subnet-
work-dependent convergence protocol (SNDCP) was born. (See Figure 13.1.)

In theory, this process could be applied to all subnetworks over
which the OSI network service might be provided; in the extreme case, all
the subnetworks in the world. Thus, the degree to which this approach
can be successfully applied is directly related to just how many subnet-
work access protocols one must modify and how many subnetwork-de-
pendent convergence protocols one must create; i.e., how heterogeneous the
existing subnetwork environment is. Since the network-centrics” view of
the world was that there was considerable homogeneity among carrier data
networks, this seemed to them that the number would be manageably
small.

Host-centrics approach the problem of subnetwork interconnection with
a radically different perspective. The host-centric view of the problem

THE NETWORK LAYER 367

Real end Real end
system Real Real system
subnet wor subnet wor k

ULs ULs
1 !
Net wor k Net wor k
X 25 | laver |ox o5 | laver) oBNt | SNDCP S
[——————— |
3| (1984)| @ 2| (1984) |4 " o |(1984) — X 25 |,
(1980) | CE | (1980)
- |
1 1

FIGURE 13.1 Hop-by-Hop Harmonization

reflects what folks who deal with LAN-based networks see every day:

+ There are many different types of subnetworks in the world.
 They will inevitably be connected together.
+ Trying to make them all look exactly alike is hopeless.®

For the heterogeneous environments encountered in the real world
every day, the practical thing to do is to define one protocol that assumes
minimal subnetwork functionality and place it firmly on top of every
subnetwork access protocol; i.e., define a subnetwork independent conver-
gence protocol (SNICP).

Technically, it is relatively simple to design a subnetwork-indepen-
dent convergence protocol: treat every subnetwork and data-link service
as providing a basic data pipe. Each pipe should support a service data
unit large enough to accommodate the header of the subnetwork-inde-
pendent convergence protocol and a reasonable amount of user data. This
is the IP or OSI connectionless network protocol (CLNP) model of net-
working. In Figure 13.2, CLNP operates in end and intermediate systems
in the same manner as IP operates in hosts and routers. Every subnet-
work and data-link service that is to provide an underlying, supporting

6. In fact, electrical engineers have demonstrated that they can invent new networking
technologies much faster than international standards bodies can develop and approve
new subnetwork dependent convergence protocol standards.

368 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Real end Rout er Real end
system Real system
Y N Y

Real subnet wor k subnet wor k

> |~ D

ULs ULs
4 4
SNI CP SNI CP
CLNP |<g - CLNP - | CLNP
3| SNDCF SNDCF | SNDCF SNDCF
SNACP SNACP, 3
LLC 1 |=e »(LLC 1| X 25 X 25
| SO 8807 | SO 8802
2l AN LAN 2
1 1

FIGURE13.2 Internetworking Protocol Approach

service to CLNP must be capable of transferring 512 octets of data.

These minimal requirements are easily accommodated over ISO/
IEC 8802 local area networks’ without introducing convergence proto-
cols; in such cases, CLNP packets are mapped directly onto the ISO/IEC
8802-2 logical link control (ISO/IEC 8802-2: 1990) service data units. The
mapping is called a subnetwork-dependent convergence function (SNDCEF).
With different subnetwork dependent convergence functions, CLNP can
also be run over connection oriented subnetworks like X.25 public data
networks, X.21 circuit-switched data networks, or switched data links.
However, the subnetwork-dependent convergence functions are more
complex, since they must deal with subnetwork connection management.
(See “Use of X.25 to Provide a Subnetwork Service in OSI Networks,”
later in this chapter.)

Hop-by-hop harmonization is something of a bottom-up approach:
you look at what your subnetwork lacks and pump it up so that it offers
the OSI network service. Internetworking is more of a top-down ap-
proach: begin with the assumption that the transport protocol will do
what it is supposed to do, define a simple data-transmission service at
the network layer, and write a protocol that allows you to forward pack-
ets over any underlying bit pipe.

7. The ISO/IEC standards for local area networks, consisting of multiple parts of ISO/IEC
8802 (8802-2, 8802-3, etc.), are equivalent to the corresponding IEEE local area network

THE NETWORK LAYER 369

Connections or
Connectionless?

A A Although the use of CLNP to provide a uniform connectionless
network service over any combination of underlying “sub”net-
works seems natural to anyone familiar with the internetworking architecture
that underlies the TCP/IP Internet (and many vendor-proprietary networks), it
was politically naive to propose it as an alternative to hop-by-hop harmonization
in the early years of OSI development. Why? The answer may be found in the
phrase “placing it firmly and uniformly on top of every subnetwork access pro-
tocol,” which suggests that those subnetwork access protocols—the pride and
joy, not to mention the economic staples, of many large public network service
providers—are somehow deficient, not up to the demands of providing the OSI
network service. To recognize themselves as providers only of edge-to-edge ser-
vice (from subnetwork entry-point to subnetwork exit point) rather than end-to-
end service (from end user to end user), the public networks would have had to
abandon their claims of networking omnipresence and omniscience. Naturally,
they were initially unwilling to do this. With hindsight, however, it can be seen
that their reluctance to recognize the importance of internetworking delayed the
completion of work on the OSI network layer for at least five years and is one of
the reasons why OSI networking today is more of a “missed opportunity” than a
reality.

As if to prove that history repeats itself even in fields with the compara-
tively brief history of networking, the basic mistake of many X.25 proponents of
the late 1970s— believing that a single network technology could be extrapolated
into a monolithic global data network—is being replayed in the 1990s by some
extremist proponents of asynchronous transfer mode (ATM), who argue that
“internetworking” is obsolete, because they can build a worldwide ATM-every-
where wide area network that will “seamlessly” interconnect ATM local area
networks, and there won’t be any need to have Ethernets, token rings, fiber-dis-
tributed data interfaces, or any other “old” network technology. And nothing
better will ever be invented. Ever. Really.

Before we close the subject of OSI network layer architecture, it will be
useful to examine the issues that can be debated when political hats are
removed and the technical pros and cons of connection-oriented net-
works and datagram networks are examined.

Network connections generally have the following characteristics:

» Once a network connection is established, all data packets travel
along the same path. Network connections thus offer low routing

standards, consisting of multiple parts of IEEE 802 (802.2, 802.3, etc.).

370

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

overhead, but they are not resilient; if one link in the path breaks,
the connection is broken.

Network connections provide fixed paths with guaranteed quality
of service characteristics (bandwidth, delay, residual error rate);
during connection establishment, resources are reserved at each
“hop” to minimize quality of service variability. Although this is
good for the established network connections, the reserved re-
sources cannot be used by or for other network connections while
an established network connection is idle.

Network connection state must be maintained at every intermediate
/Ihop.ll

Network connection-establishment overhead is unacceptable for
bursty data. Some applications require very high bandwidth for a
very brief spurt or “burst.” For example, if a user of a distributed
file service attempts to retrieve a file from a remote server across a
local area network, that user wants the read completed as quickly
as if the file were stored locally (see Sandberg, 1988). The network
service must exhibit both high throughput and low latency.
Network connection establishment is more time-consuming than
sending a datagram and in these circumstances is ill-advised; con-
sider how difficult it might be for a file server to reserve a virtual
circuit having the bandwidth necessary to read a 4-megabyte file in
some measure of milliseconds and do so for many clients.

Connectionless data transfer has its own set of strengths and weak-

nesses:

Datagrams are a best-effort delivery; reliability mechanisms, if re-
quired, must be provided at the transport layer.

State machine handling of datagrams at intermediate hops is greatly
simplified when compared to network connections.

Since each packet is routed independently, routing overhead is
imposed at each hop. In most routing systems, however, routing is
adaptive in the face of failures.

Resources are used as needed (no resource reservation per network
connection); however, to minimize quality of service variability,
multilevel congestion-management mechanisms and possibly type
of service routing may be required.

There is no connection setup. Resources are allocated as needed or
“on demand.” Connectionless data transfer is better suited for sup-
porting bursty data applications.

A colleague (Winston Edmond, who works with one of the authors

THE NETWORK LAYER 371

at Bolt Beranek and Newman) has suggested a useful thumbnail descrip-
tion of the difference between datagrams and connections:

 Datagrams: The hosts don't tell the network anything about the traf-
fic they are about to send. In this case, the best the network can do
is to monitor the dynamic behavior of the hosts and hope that past
history is a guide to future behavior (and that the network designer
has provisioned the network so as to accommodate most, if not all,
such behavior).

 Connections: The hosts tell the network what they want to do and
ask for guarantees (bandwidth, maximum delay, maximum error
rate, etc.). In this case, there is an actual setup phase during which
the required resources are allocated (if possible; explicit connection
setup also provides the network with the opportunity to refuse ser-
vice entirely in situations in which it cannot provide the requested
guarantees), and the success or failure of the setup is reported to
the hosts before actual data exchange begins.

(Edmond goes on to compare these two types of network service
with a hybrid called “flows,” in which the hosts tell the network what
they are about to do but don’t ask for any guarantees—thereby enabling
the network to improve somewhat its otherwise poorly informed antici-
pation of their future behavior without forcing it to preallocate its re-
sources in order to be sure of meeting static per-connection performance
criteria. See Partridge [1992] for a discussion of “flows.”)

There are more pros and cons for both types of service, to be sure.
Some of these are bit niggling (e.g., datagrams require more “header
stuff” than network connections once the connection is established) and
some religious (but we’ve always offered connections!). Although not
exhaustive, these lists provide readers with enough insight to appear to
be “in the know” the next time the issue of “connections or datagrams”
comes up during polite dinner conversation.

AT Ac The “Connections versus Connectionless” standoff is often
cited as the ultimate tragi-comedy in OSI. But although the
OSI environment is certainly partitioned into connection-oriented and connec-
tionless worlds at the network layer, and different transport protocols are used
over both types of network service, there remains hope for reunification. Several
alternatives exist:

* Build network relays. These are truly awful beasts. They constrain topolo-
gies, and are difficult to build. And they most often rely on the operation

372

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

of a common transport protocol (class 4); but the presence (or absence) of
TP4 is one among many other bones of contention that caused the parti-
tioning of the network layer in the first place!

Build transport relays rather than network relays. These, too, are difficult
to build; they violate the OSI reference model (transport functions are sup-
posed to operate end-to-end); and they are generally considered to be bro-
ken. For example, if you attempt to relay protocol mechanisms designed to
support certain transport functions (e.g., security provided by transport
protocol encryption), you break them.

Provide interworking between connection-oriented and connectionless net-
works. The solutions offered to date are both complex and constraining.
Support both services in all end and intermediate systems. This is generally
perceived to be prohibitively costly to end systems.

Build transport bridges. These have been demonstrated to be better alterna-
tives than transport relays, especially when two useful transport proto-
cols—TCP and TP4—play roles in the bridging mechanism. Transport
bridges are often the only practical solutions.

Pray that, over time, attrition will eventually reduce all the useless combi-
nations to a single network service and a single transport protocol. A good
place to start would be the elimination of all the OSI transport protocol
classes except class 4 (TP4).

Bridges and attrition are the best bets. Many of the same issues exist for

multiprotocol (TCP/IP and OSI) networking and are discussed in Chapter 16.

Connection-oriented Network Service

An OSI network connection has the same three fundamental phases of
operation—connection establishment, data transfer, release—as all previ-
ously described connection-oriented services. The primitives and para-
meters provided at the network layer for a connection-oriented service
are illustrated in Table 13.1.

Again, the network connection is modeled after a telephone conver-

sation: dial the phone, talk, hang up. However, a couple of astonishing
perturbations are introduced:
« Any party can decide that it has lost track of the conversation (re-

set).

+ The phone company will tell you whether or not the party you called

heard what you said (receipt confirmation).

Where did these come from? Welcome to the world of grandfather-

THE NETWORK LAYER 373

TABLE 13.1 CONS Primitives

Primitives Parameters

N-CONNECT
request indication Called address, calling address,
expecited data option, QOS, recept
confirmation option, NS-userdata
response confirm Called address, responding address,
expedited data option, QOS, receipt
confirm option, NS-userdata

N-DATA
request indication NS-userdata, confirmation request

N-DATA-ACKNOWLEDGE
request indication

N-EXPEDITED-DATA

request indication NS-userdata
N-RESET

request indication Reason

response confirm Originator, reason

N-DISCONNECT
request indication Reason, NS-userdata, responding address
(Originator, reason, NS-userdata,
responding address)

ing existing protocol features into new service definitions. In principle, a
service definition provides the template for protocol design and develop-
ment. Services are identified, functions required to support those ser-
vices are defined, and a protocol capable of performing the functions and
providing the services is specified.

In practice, some of the principle was lost. OSI's Connection-oriented
Network Service Definition (ISO/IEC 8348: 1987), is a marvelous example
of reverse service engineering. CCITT Recommendation X.25 for public
packet-switching networks was published before the development of the
connection-oriented network service. It had already been deployed by
PTTs and common carriers to support CCITT applications (e.g., the

374

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

X.25 Packet Level
Protocol—OSI’s
Connection-ori-
ented Network
Protocol

TABLE 13.2 Correspondence between Connection-oriented Network Service
Primitive and X.25 Packets

CONS Primitives X.25 Packet
N-CONNECT request Call request
indication Incoming call
response Call accepted
confirm Call connected
N-DATA request, indication Data
N-EXPEDITED-DATA request, indication Interrupt
N-RESET request Reset request
indication Reset indication
N-DISCONNECT request Clear request
indication Clear indication

“triple-X” recommendations—X.3, X.28, X.29 [CCITT Recommendations
X.1-X.32 1989]—that support terminal application protocols), and for
many, the use of X.25 to support the OSI network service was an expedi-
ent and politically correct solution.

To take advantage of as many features in X.25 as possible, advo-
cates adopted a Machiavellian attitude toward the OSI connection-oriented
network service: manipulate the service to conform to the service offered
by X.25. This “Never let an architecture stand in the way of your imple-
mentation” approach is best illustrated by the nearly one-to-one corre-
spondence between OSI connection-oriented network service primitives
and X.25 packets, illustrated in Table 13.2.

Although ISO and CCITT devote reams of paper to codifying the opera-
tion of network connections (ISO/IEC 8208: 1987; ISO/IEC 8878: 1987;
ISO/IEC 8881: 1989), it is rather easy to describe how the OSI network
service is provided by the X.25 packet level protocol without descending
to the bit level of detail.

The ISO/IEC standard for X.25 defines two interfaces:8

1. Between a computer (data terminal equipment, or DTE) and a carri-
er network node (data circuit-terminating equipment, or DCE)

2. Between two computers without an intervening public network
(DTE/DTE)

8. CCITT Recommendation X.25 defines only the DTE/DCE interface.

THE NETWORK LAYER 375

The DTE/DCE physicalinterface can be leased or switched. The DTE/
DTE physical interface can be a leased line, a switched circuit, or a local area
network (ISO/IEC 8881: 1989). Both virtual-circuit and permanent virtual-
circuit modes of operation are accommodated. In the virtual-circuit mode
of operation, a connection must be set up, used, and disconnected. With a
permanent virtual-circuit arrangement, a subscriber has facilities and
resources permanently assigned between two DTEs by a carrier (the call
is “always there”). These alternatives are illusrated in Figure 13.3.

Figure 13.4 illustrates (in the abstract) the three phases of a network
connection established across a switched (VC mode of operation) X.25
circuit.” An N-CONNECT.request primitive causes DTE A to issue an
X.25 call request packet. The DCE receives this request, and the network
constructs a path between DTE A and DTE B, allocating and reserving
resources of packet switches that comprise the path along the way. The

Virtual circuit (VO

or pernmanent

e |
DTE — virtual circuit (PVC —=— DTE
A X 25 X 25 B
PLP PLP

DCE DCE

—

(e.g.,aPDN

—
X 25 u
PLP '&'
DTE X 25| | prE
A - PLP B

Leasedline, dial -up, LAN

FIGURE 13.3 X.25 Interfaces

9. The procedures for operating the X.25 packet-level protocol between DTEs without
an intervening public network are virtually identical. This description covers only those
aspects of X.25 VC operation relevant to the packet level of operation. At the data-link
level, both leased-line and circuit-switched access to a DCE are provided by many carrier
networks. CCITT Recommendation X.32 describes additional packet-level considerations
(e.g., user identification) typically required for switched access to a public network.

376

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Use of X.25 to
Provide a Subnet-
work Service in
OSI Networks

terminus DCE issues an incoming call packet to DTE B, which causes an
N-CONNECT.indication. DTE B issues a call-accepted packet, and DTE A
eventually receives a call-connected packet from the DCE. All X.25 data
packets exchanged during this virtual call are forwarded along the path
created by the DCEs during network connection establishment. When the
network service user at DTE A elects to close the network connection, it
issues an N-DISCONNECT.request, causing DTE A to issue a clear request
packet. This is processed by the DCE and results in the generation of a
clear indication packet to DTE B. DTE B acknowledges receipt of the clear
indication by returning a clear confirmation packet. This packet eventually
makes its way back to DTE A, causing the generation of an N-DISCON-
NECT.confirmation. Network connection disconnection is described in
ISO/IEC 8348 as “unconditional and possibly destructive” (honest, this is
what it says, you can look it up).

During the data phase, the X.25 packet level protocol provides
sequence control, flow control, expedited data (using the interrupt facility
and packets), and error notification. Reset, carefully distinguished as a
feature rather than an error notification, offers a means by which a net-
work connection ”can be returned to a defined state and the activities of
two network service users synchronized.”!? Reset can be network service
provider— or network service user—initiated. Negotiation and use of the
D-bit facility enables the receipt confirmation function of the OSI network
service. Receipt confirmation allows a network service user to request
end-to-end acknowledgment of the delivery of data it is transmitting. In
its implementation, receipt confirmation signals to the network service
user that the X.25 data packets transmitted have been acknowledged.
Although this is a clear violation of the OSI reference model (the internal
machinations of an [N]-layer protocol should be hidden from an [N]-ser-
vice user), the facility was “grandfathered” into the OSI connection-ori-
ented network service over the protests of purists, largely because it was
a tariffed facility.

When a connectionless network service is provided to communicating
transport entities in OSI, the X.25 packet-level protocol plays the role of a

10. ISO/IEC 8348 does not provide a definition of “defined state,” nor does it describe
what activities the network service users “synchronize.” From personal experience, we may
say that defined state is “Some of your data are lost; I hope someone was keeping track . . .”
The synchronization activities are transport protocol-dependent; for example, upon receipt
of a reset indication, transport classes 0 and 2 give up and disconnect (big help . . .), but
classes 1 and 3 initiate resynchronization procedures (see Chapter 12). TP4 is completely
resilient to reset indication, treating it like any other error . . . er, feature.

THE NETWORK LAYER 377

DTE A DTE B

N- CONNECT. r equest
—— || Call reques

2

I ncom ng cal

T
N-CONNECT.indication
N-CONNECT .response

Cal | accept gd /

Cal | connect ¢d

mz — -

N- CONNECT. confi r mat i on

N- DATA. r equest

T Dat a

Dat a
T~

N-DATA.indication
Mbits and Qbits
andDbits. . . ohny!

N- DI SCONNECT. r equest

T |[Cear reaues

dearindicatio

T
N DI SCONNECT. i ndi cati on

o | Clearconfirmatio|

Y N- DI SCONNECT. conf i r mat i on N- DI SCONNECT. r esponse

FIGURE 13.4 X.25 PLP Operation

subnetwork access protocol operating beneath an internetworking proto-
col (i.e., an SNICP; see Figure 13.2), and each X.25 virtual circuit serves
as a simple bit pipe. OSI network datagrams (CLNP packets) are mapped
onto these subnetwork connections and transferred between communicat-
ing CLNP network entities. A minimal subnetwork service is expected
from X.25 networks operating in the subnetwork role; essentially, virtual
circuits must be capable of handling a maximum service data unit size of
no less than 512 octets. Many of the reliability features of the X.25 packet-
level protocol remain useful across this single internetwork “hop”

378

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TCP/IP Use of
X.25

(although the authors know of no implementations that make use of
receipt confirmation when X.25 plays this role), but unnecessary. When
X.25 virtual circuits are used to provide a subnetwork service to CLNP,
subnetwork-dependent convergence functions specific to X.25 are used to
set up, transfer data over, and tear down “subnetwork connections”
between communicating CLNP network entities. The subnetwork connec-
tion-management functions for X.25 are described in ISO/IEC 8473 (the
standard for CLNP), and the description is generic enough to apply to a
family of switched, connection-oriented network services, including pack-
et-mode Integrated Services Digital Networks (ISDN), Frame Relay, and
new “cell-relay” services (see Chapter 15).

Subnetwork connection management begins as a relatively simple
process. To send a CNLP packet across an X.25 public data network, for
example, an X.25 virtual circuit must be established. If the CNLP packet
is the first to be sent to a particular destination reachable via the X.25
public data network, the X.25 call-setup procedures must be initiated
(connection establishment) and a virtual circuit must be established.
Subsequent CLNP packets can be sent over the same virtual circuit.!’ The
process is relatively simple if there is no cause to tear down the X.25 vir-
tual circuit; if, however, there is a cost associated with X.25 call duration
(for example, one is charged for how long one remains on a telephone
regardless of whether one talks constantly or not), it may be more eco-
nomical to tear down the virtual circuit when there are no longer any
data to send (trading the cost of call duration for the cost of call setup the
next time a packet must be sent to that destination). Determining when to
tear down the X.25 virtual circuit is tricky; like telephones, the virtual cir-
cuit is full-duplex, and one party may think the conversation has ended
while the party at the other end still has something to say. Timers are rec-
ommended to impose a maximum idle time on a virtual circuit; i.e., the
expiration of a timer indicates that neither party has said anything for a
while, so it’s presumably safe to clear the virtual circuit. But timers alone
do not entirely solve the problem of synchronization, which may require
additional protocol interaction on behalf of the parties sharing the virtual
circuit (i.e., one computer would ask permission to tear down the call,
and would only do so if granted by its peer).

In the Internet architecture, X.25 is not considered to be a protocol of the

11. Can be, but need not be; the standards permit considerable flexibility in the way in
which virtual circuits are managed, so as to accommodate the wide variety of tariffs that
govern the use of public networks.

THE NETWORK LAYER 379

network layer. X.25 is one of many network interfaces on top of which IP
is run. Both DTE/DTE and DTE/DCE modes of operation are supported
(Defense Communications Agency 1983; RFC 877). A more recent
Internet RFC describes multiprotocol interconnection over X.25 and
ISDN in the packet mode (RFC 1356). It doesn’t change X.25’s role in
TCP/IP; rather, it corrects some of the errors and ambiguities in the RFC
877 text and aligns it with ISO and CCITT standards that have been writ-
ten since RFC 877 was published. One important change to the IP encap-
sulation is that RFC 1356 recommends an increase in the allowed IP data-
gram maximum transmission unit from 576 to 1,600 octets, to facilitate
local area network interconnection.

Connectionless Network Service

Datagram Service
in OSI

Both OSI and TCP/IP support a connectionless network service: OSI as
an alternative to network connections and TCP/IP as the only game in
town (TCP/IP networking can use connections to transfer IP datagrams,
but IP offers only a connectionless service to its users). The OSI stan-
dards attach great importance to the way in which transport connections
are bound to network connections when the OSI connection-oriented
network service is used, because in OS], the connection-oriented network
service represents, in fact, an attempt to perform some of the functions of
the transport layer in the network layer. When the connectionless net-
work service of OSI or TCP/IP is used, the coupling of connections is not
an issue, and neither service attempts to pass any of the connection-ori-
ented features that may be present in underlying subnetworks through
to the transport layer.

OSI’s connectionless network service (CLNS) (ISO/IEC 8348: 1993)
is a best-effort-delivery service. Like a letter one submits to the postal ser-
vice, each network service data unit submitted to the OSI connectionless
network service contains all the addressing and service quality informa-
tion necessary to forward the packet from its source to its destination,
over potentially many intermediate “hops” along the way (see Figure 13.5).

The details of the OSI connectionless network service can be found in
ISO/IEC 8348. A “datagram” primitive (N-UNITDATA) is used to
describe the process of submitting user data to and receiving user data
from the connectionless network service provider (see Table 13.3). The
service definition is quite simple; after all, how much can one say about a
datagram?

380 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

Net wor k Net wor k
user user
A B

(1) I'ssue an N-UNI TDATA. request

(2) Reci eve an N-UN TDATA. i ndi cati ol

Net wor k servi ce provi de

FIGURE 13.5 Connectionless Network Service

TABLE 13.3 The OSI Connectionless Network Service Primitives

Parameter N-UNITDATA N-UNITDATA
Request Indication
Source address X X (=)
Destination address X X (=)
Quality of service X X
NS-USERDATA X X (=)

THE NETWORK LAYER 381

Datagram Service
in TCP/IP

AT A Actually, a lot. ISQ/IEC 8348 is em'bellished by a 3reat d?al of
explanatory material, since connectionless networking enjoyed
a heretic’s notoriety ten years ago that is difficult to imagine today. One of the
more amusing parts of the standard describes the “queue model” for a connec-
tionless service, which portrays the connectionless network service provider as
nothing less than a reprehensible scoundrel who may “discard objects, duplicate
objects . . . change the order of objects in the queue,” as if such actions were per-
formed deliberately as part of a malicious effort to subvert the true and proper
goal of networking —which is of course embodied to its fullest extent only in the
connection-oriented network service . . .

Where are the OSI network-layer protocols in a representative UNIX
implementation? Following the model for TCP/IP, the ARGO 1.0/RENO
network services, connection-oriented and connectionless, are accessed
via procedure calls within the kernel (for debugging purposes, the “raw”
socket may be used to access the connectionless service). To support two
services, different transport layer to lower layer interfaces are provided.
The CLNP and X.25 protocol-control blocks coexist under one transport
layer, and the transport protocol-control block is separated from the net-
work-layer protocol-control blocks to allow both CLNP and OSI transport
protocols to interface to X.25 in the same way (see Figure 13.6).

RFC 793 describes the underlying service that TCP expects to receive
from the internet layer (who says we have no architecture in the
Internet?) In keeping with the TCP/IP design principle of end-to-end
reliability provided by an end-to-end transport protocol, TCP’s expecta-
tions are minimal: data transfer with nonzero probability of arrival, dur-
ing which
+ Data may be lost.
« Data may arrive in an order different from the order in which they
were sent.
+ The data that are received may not be precisely the same as the
data that were sent.
» Data may be delivered to the wrong destination.

TCP expects the underlying service!? to select a route and forward

12. In most implementations of TCP, the underlying service is provided by IP, but RFC
793 does not require that this be the case; in principle, any protocol that provides the same
essential service as IP could be operated under TCP. This is the basic premise for the work
that is being done under the name of “TUBA” (TCP and UDP with bigger addresses) in the
Internet Engineering Task Force, which substitutes OSI’s CLNP for IP as TCP’s “underlying

382 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

. T

upper TeP UNI X user space
| ayers appl i cati ons

..

GG

transport TCP
pr ot ocol s and ~

IP \Ker nel

—— Net wor k
X 25dri ver. interfaces

Figure 13.6 ~ OSI Network Layer in a Representative UNIX Implementation

a packet based on the globally unique address it provides. The underly-
ing service must also be capable of transferring maximum TCP segment
size of at least 536 octets (see RFC 879).

For

RFC 793 also formally describes the send and receive operations.
send (NET_SEND), TCP submits the following parameters to the

underlying service:

Source and destination addresses

Protocol identifier (identifying the service user as TCP)
Type-of-service indicators—precedence, reliability, delay, through-
put

A “don’t fragment” indicator

A recommended “time to live” value

The length of the data being sent, in octets

A data identifier that distinguishes this unit of data from others
sent by the same upper-layer protocol (TCP user)

Options—a selection from the menu of options offered by IP or an
equivalent underlying service

Data

service” but keeps all the other TCP/IP protocols. A description of TUBA may be found in

REC

1347 and in Ford (1993), which is part of a special issue of IEEE Network magazine

devoted to protocols that are proposed as successors to IP in the Internet.

THE NETWORK LAYER 383

For a receive operation (NET_DELIVER), TCP receives the follow-
ing parameters from the underlying service:

e Source and destination addresses

e Protocol identifier

+ Type-of-service indicators—precedence, reliability, delay, through-
put

+ The length of the data received in octets

+ Options selected by the sender

o Data

In a TCP/IP implementation, only one transport—-to-lower-layer
interface is required (see Figure 13.6).

Internetworking Protocols

OSI's CLNP (ISO/IEC 8473: 1993) is functionally identical to the Inter-
net’s IP (RFC 791), so the two internetworking protocols—subnetwork-
independent convergence protocols in Internal Organization of the Network
Layer jargon—can be discussed in parallel. Both CLNP and IP are best-
effort-delivery network protocols. Bit niggling aside, they are virtually
identical. The major difference between the two is that CLNP accommo-
dates variable-length addresses, whereas IP supports fixed, 32-bit
addresses. Table 13.4 compares the functions of CLNP to those of IP.
Figures 13.7 and 13.8 illustrate the header formats of CLNP and IP,
respectively.

The functions performed by the two protocols are also closely relat-
ed as indicated in the following subsection (see also Postel, Sunshine,
and Cohen [1981] and Piscitello and Chapin [1984]).

Header Composition Function This function!® interprets the Ns-UNIT-
DATA request parameters and constructs the corresponding CLNP data
unit. In IP, this amounts to IP’s processing the upper-layer protocol’s
send (NET-SEND) parameters and constructing the corresponding data-
gram.

Header Decomposition Function This function interprets the header

13. CLNP has a silly protocol function called “header format analysis,” which amounts to
examining the first octet of the protocol (the network-layer protocol identifier, or NLPID) to
determine whether CLNP or the brain-damaged “inactive network layer protocol” is present.
The inactive network layer protocol is an abomination; a single octet of 0 may be encoded in
the NLPID field to denote “There’s no network layer protocol present.”

384 OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TABLE 13.4 Comparison of CLNP to IP
Function ISO CLNP IP
Version identification 1 octet 4 bits

Header length

1 octet, represented in octets

4 bits, represented in 32-bit words

Quality of service

QOS maintenance option

Type of service

Segment/fragment length

16 bits, in octets

16 bits, in octets

Total length

16 bits, in octets

Not present

Data unit identification

16 bits

16 bits

Flags

Don’t segment, more segments,
suppress error reports

Don’t fragment, more fragments

Segment/ fragment offset

16 bits, represented in octets
(value always a multiple of 8)

13 bits, represented in units of 8 octets

Lifetime, time to live

1 octet, represented in 500-
millisecond units

1 octet, represented in 1-second units

Higher-layer protocol Not present Protocol identifier
Lifetime control 500-millisecond units 1-second units
Addressing Variable-length 32-bit fixed
Options Security Security

Priority Precedence bits in TOS

Complete source routing
Partial source routing
Record route

Padding

Not present

Strict source route
Loose source route
Record route
Padding
Timestamp

reason for discard (ER PDU only)

information of the received datagram and creates the corresponding NS-
UNITDATA.indication. For IP, this amounts to extracting the receive
(NET-DELIVER) parameters to be passed to the upper-layer protocol
along with the data.

Lifetime-Control Function This function limits the amount of time a
datagram may remain in the network. The originator of the CLNP or IP
packet determines how long it should take the datagram to reach its desti-
nation and places this value in the datagram header (using 500-millisec-
ond units for CLNP, 1-second units for IP). This value is decremented by
each of the intermediate systems/gateways that subsequently process the
datagram. The datagram is discarded if the lifetime field (time to live in IP)
reaches a value of 0 before the datagram is delivered to the destination.

THE NETWORK LAYER 385

Addr ess part .
Fi xed P Segnent at i on ti ons User
t Desti nati oraddr esqDesti nation Sour ceaddr ess Sour ce QJ ~ dat a
par | engt i ndi cat or addr ess | engt H ndi cator | address part

Dat auni t Segnent Tot al
identifier of f set length

| Code | Lengt h | Val ue |

Net wor k| Header] (neor noreof thefoll O.Wi ng
| ayer Life | Hags |Segnmeni| Header Paddi ng

length | Versior . X
Pée?;,of(?(" i ndi cgalor tine type | length | checksun Sour cerout i ng
! e Recordroute

/ Security
H ags Type Qos

More segnent s|Segmentatio Suppress | Data(obmn = 11100 Riority
permtted error Error-report(ER) = 00001
reports Echo request (ERQ= 11110
Echoreply(ERP) = 11111

FIGURE 13.7 CLNP Data Unit Format

The CLNP lifetime-control function is a combination of hop count
and time. The amount by which the value is to be decremented is the
sum (in milliseconds) of the estimated or measured transit delay in the
subnetwork from which the CLNP packet was received and the delay
within the intermediate system that processed the CLNP packet. The life-
time field must be decremented by at least 1 by each intermediate sys-

Ver si on }—Ibei%% Typeof servi ce Fragment | engt h
Identification H ags Fr agnent of f set
TTL Pr ot ocol Header checksum
Sour cel Paddr ess
Dest i nat i onl Paddr ess
oti ons Paddi ng

FIGURE 13.8 IP Datagram Format

386

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

tem.!# IP’s time to live (TTL) operates on a time basis; the upper-layer
protocol provides a maximum datagram lifetime in 1-second units
among the send parameters submitted to the datagram service.

Route PDU and Forward PDU Functions The route PDU function
determines the network entity to which the datagram must be forwarded
and the underlying service (i.e., the link) over which the datagram must
be sent to reach this “next hop.” The forward PDU function submits the
datagram to the underlying service selected by the route PDU function
for transmission to the next hop (it is here that subnetwork-dependent
convergence functions might be invoked—for example, to establish an
X.25 virtual circuit to transmit the CLNP packet).

Header Error-Detection Function This function protects intermediate
systems from undetected (bit) errors in the protocol-control information
of each datagram. An example of such an error is the misdelivery of a
datagram as a result of the corruption of the destination address field. A
16-bit arithmetic checksum based on Fletcher (1982) is employed in the
CLNP; a similar mechanism protects the IP header from transmission
errors.

The rules for processing the CLNP header checksum are as follows:

 Generate the checksum only once, when the initial packet is created.

+ Check it at each intermediate system, using a separate algorithm
from the one used for checksum generation.

» Do not recompute the checksum, but adjust it (again, using a sepa-
rate algorithm) when modifying the header. (Fields of the CLNP
header may be modified by an intermediate system when it per-
forms lifetime control and segmentation and when it performs cer-
tain optional functions, such as recording of route or setting the
congestion-experienced bit in the QOS maintenance option.)

The rules for processing the IP header checksum are the same as
those for CLNP: generate the checksum when the IP segment is created
and check it at each router. In IP, the checksum is either adjusted without
full recomputation (as for CLNP) if only the time to live field in the head-
er is changed, or completely recomputed if any other header fields are
changed.

Segmentation/Fragmentation Functions The terms segmentation and
fragmentation both refer to the process whereby an IP or a CLNP packet of

14. Appendix B of ISO/IEC 8473 provides reasonable implementation guidelines for deter-
mining datagram lifetime and reassembly lifetime control.

THE NETWORK LAYER 387

size N is broken up into smaller pieces if and when it becomes necessary to
transmit the packet over a subnetwork for which the maximum packet size
is less than N. The OSI standards prefer segmentation and the TCP/IP stan-
dards fragmentation, but in most of what follows, the two terms (and other
variations of the roots segment and fragment) are used interchangeably.

Segmentation is the process of composing two or more new derived
CLNP packets—segments—from an initial CLNP packet.!> Segmen-
tation can be performed only if the segmentation-permitted flag is set to
1; otherwise, an intermediate system that receives a CLNP packet requir-
ing segmentation must discard that packet.

CLNP segments are identified as being from the same initial packet
when they have the same source and destination address pair and the
same data unit identifier. The value of the total length field in all segments
of a given initial packet remains the same as the value originally speci-
fied in the initial packet. This value may be used by a system to allocate
buffer space for the entire CLNP packet regardless of which segment
(the first, any of the middle ones, or the last) is received first. The segment
offset of each CLNP segment is set to the octet at which the segment
begins with respect to the beginning of the initial packet (see Figure
13.9). The more segments flag is set to 0 if the final octet of the initial pack-
et is contained in this segment; otherwise, it is set to 1.

All header information from an initial CLNP packet except the val-
ues of the segment length, segment offset, and checksum fields is copied
into the header of all segments derived from that packet by fragmenta-
tion. The value of the checksum field must be adjusted to reflect the
changes in the values of the segmentation part of the CLNP header, life-
time field reductions, and changes to options (if any).

The IP fragmentation process is nearly identical to CLNP segmenta-
tion. The protocol header of a fragment is copied or derived from the
original IP datagram, including its options. IP fragmentation can be per-
formed only if the don't fragment flag is set to may fragment (0); otherwise,
a gateway that receives an IP datagram requiring fragmentation must
discard it. Fragments are identified as being from the same IP datagram
when they have the same values for the following fields: datagram iden-

15. The “initial” CLNP packet is the one constructed by the original sender of the packet
in the source end system. When an incoming packet is broken up into segments for trans-
mission over the “next-hop” subnetwork, each segment is transmitted as a CLNP packet,
which becomes the “incoming” packet at the next-hop system on the path—where it may
have to be fragmented again. An “initial” packet, therefore, really means either the initial
packet emitted by the source or any incoming packet (datagram or datagram segment) that
is “initial” with respect to the operation of CLNP in the system to which it is “incoming.”

388

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

NSDU
1, 536 oct et §

«———2ccess poi n

Net wor k
servi ces

Transport | ayer

Net wor k | ayer

Segnent | ength = 512

_ CNLP Segrent 3 Fi nal packet sent
Segnent offset = 1,0 header 512 octets >
Total length=1,53
Segnent | ength = 51. Second ket
Segment of fset = 51 CNLP Segnent 2 cond packet ser
Total I ength=1, 53 header 512 octets
Segnent | ength = 51z Initial ket
Segnent of fset =0 CNLP Segment 1 il & packs Sen
Total | ength =1, 53¢ header 512 octets

Datalinkl ayer

FIGURE 13.9 CLNP Segmentation (Conceptual)

tification, source and destination addresses, security, and protocol. The
value of the fragment offset field is set to the octet at which the segment
begins with respect to the beginning of the initial IP datagram. The value
of the total length field is set to the length of the IP fragment. (The IP
header does not include a field that gives the total length of the initial
packet.) The more fragments flag is set to last fragment (0) if the final octet
of the IP datagram is contained in this fragment or to more fragments (1) if
fragments containing additional octets from the initial packet follow
those contained in this fragment.

IP fragmentation differs from CLNP segmentation in the following
ways:

» Data must be fragmented on 8-octet boundaries.

+ The value of the fragment offset represents the position of this frag-
ment relative to the beginning of data in 8-octet groups.

« The total length of the initial IP datagram is not encoded in the IP
header.

Fragmentation and reassembly have a direct bearing on overall net-
work performance. Experience demonstrates that it is nearly always bet-

THE NETWORK LAYER 389

ter for the source end system to compose and send one large datgram
rather than lots of little “micrograms,” but a poorly implemented frag-
mentation strategy can cause serious problems if that large initial packet
must later be fragmented to cross a subnetwork that cannot swallow it
whole (Kent and Mogul 1987). CLNP implementers can benefit by study-
ing and extracting the directly relevant information recorded during the
nearly 20 years of practical experience in implementing IP and observing
its behavior. For example, Clark discusses IP datagram reassembly algo-
rithms in RFC 815. Clark also provides a marvelous explanation of how
transport and internetwork protocols can be efficiently implemented in
RFC 817. And the host and gateway requirements documents RFC 1122
and RFC 1009 provide Internet guidelines for the implementation of
fragmentation and reassembly procedures.

Discard and Error-reporting Functions As a last resort, both CLNP
and IP discard datagrams when things go bad; e.g., when

» A protocol error is detected.

» A checksum computation fails to yield the value indicated in the
checksum field of the datagram header.

+ Buffers are not available to store the datagram.

» A datagram arrives that must be segmented (fragmented) before it
may be forwarded, but the flag settings don’t allow segmentation
(fragmentation).

« Conditions for processing options cannot be satisfied.

+ The lifetime of a datagram expires.

+ The time allotted for reassembly of a datagram expires.

The “Internet Control Message Protocol” (ICMP; RFC 792) provides
an elaborate mechanism for reporting errors in IP datagram processing
at hosts and gateways.!® Equivalent functions are provided for CLNP
using a reason for discard option conveyed in the CLNP error report. ICMP
messages are encapsulated in IP datagrams and are distinguished from
other upper-layer protocols conveyed in IP datagrams by the value 1 in
the protocol (PROTO) field, whereas CLNP error reports are distin-
guished from CLNP data packets by assigning a value of 1 to the type
field of the CLNP header.

ICMP messages and CLNP error reports are both datagrams, and
delivery of these messages is not guaranteed; generation of error-report
messages, however, is mandatory in both protocols when certain errors

16. Error reporting is not the only function of ICMP; see “TCP/IP and OSI Control
Messages” later in this chapter.

390

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

occur. The header of a discarded CLNP packet and as much of the data
as can be accommodated without segmentation is returned in the CLNP
error report. Similarly, every ICMP error message includes the IP header
and at least the first 8 data octets of the IP datagram that caused the
error. More than 8 octets may be sent, so long as the ICMP datagram
length remains less than or equal to 576 octets.

The errors reported by ICMP and CLNP are compared in Table
13.5; for TCP/IP, however, it is always useful to refer to “Requirements
for Internet Hosts—Communication Layers” (RFC 1122) for the precise
circumstances that precipitate the generation of an ICMP error message.

The process of generating error reports and ICMP messages is vir-
tually the same. One never generates an error message about an error
occurring during the processing of a CLNP error report or an ICMP mes-
sage. ICMP messages are generated only when an error is detected in the
fragment whose fragment offset is set to 0 (the first chunk of the data-
gram); since no such restriction is explicitly stated in CLNP, one should
conclude that it is appropriate to generate an error report PDU about an
error occurring in any segment of a CLNP data unit.

Options Both CLNP and IP have lots of options. The sets of options
defined for the two protocols are virtually identical, but the processing is
slightly different (as, of course, are the bits). Table 13.6 compares CLNP
and IP options, and provides a brief explanation.

The composition of CLNP error reports is affected by the options
present in the discarded CLNP data packet; specifically, the CLNP error
report must have the

+ Same priority and QOS maintenance (if these options are support-
ed).

« Same security. If this option is not supported, the CLNP error
report should not be generated.

» Reversed complete source route. If this option is not supported, the
CLNP error report should not be generated.

Padding, partial source routing and record route may be specified
by the intermediate system generating the CLNP error report if these
options are supported.

ICMP and IP are completely independent protocols; however,
which options from the discarded IP datagram are copied into the data-
gram that conveys the ICMP error message datagrams remains an issue
in the Internet Engineering Task Force. Currently, the IP datagram that is
used to carry an ICMP message must set type of service to 0, and any
ICMP message returned in response to a packet that contains an IP secu-

THE NETWORK LAYER

391

rity option should include a security option identical to that found in the

discarded IP datagram.

TABLE 13.5 Comparison of ICMP Messages and CLNP Error Reports
Category CLNP Error Report ICMP Message
General Reason not specified Parameter problem

Protocol procedure error

Incorrect checksum

PDU discarded—congestion
Header syntax error

Segmentation needed, not permitted

Incomplete PDU received
Duplicate option

Parameter problem

Parameter problem

Source quench

Parameter problem

Fragmentation needed, but don’t frag-
ment flag is set

Parameter problem

Parameter problem

Addressing-related

Destination address unreachable
Destination address unknown

Network unreachable*
Host unreachable

Source routing

Unspecified source-routing error
Unknown address in source-

Source route failed
Source route failed

routing field

Path not acceptable Source route failed
Lifetime Lifetime expired while data unit Time to live exceeded in transit

was in transit

Lifetime expired during reassembly Reassembly time exceeded
PDU discarded Unsupported option, unspecified error Parameter problem

Unsupported protocol version Parameter problem

Unsupported security option Parameter problem

Unsupported source-routing option Parameter problem

Unsupported record-route option Parameter problem
Reassembly Reassembly interference Reassembly time exceeded

*Gateways and hosts that generate ICMP destination unreachable messages are encouraged to “choose a response code
that most closely matches the reason why the message is being generated.” RFC 1122 identifies an expanded list of rea-

son codes.

392

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TABLE 13.6

CLNP and IP Options

CLNP Option

Corresponding IP Option

Comments

Complete source routing allows the
originator of a packet to dictate the
entire and only route (i.e., every
router) a packet can take.

Strict source and record routing
enables a ULP to name the IP
modules that must be visited.

In both cases, all segments/frag-
ments must follow the same route
(option is copied into all fragments).

Partial source routing allows the
originator to provide a partial list
of routers (pointing the packet in
the right direction).

Like CLNP’s option, loose source
and record routing allows a ULP

to provide “hints” (the “inverse”
route is recorded along the way).

’

CLNP options are copied into
every segment; loose source and
record routing is only present in
fragment 0.

Partial route recording records the
list of intermediate systems visited
by a packet, in order of traversal.

Record route records the list of
gateways a datagram visits.

Each router that forwards the
packet records its address in the
header (and updates the check-
sum). The size of the option is
fixed by the originator, and the
packet may continue even when
space for recording is exhausted.

Complete route recording is a
restricted variation of partial route
recording.

A complete route must be record-
ed or else the packet is discarded
and an error report is generated.

Priority indicates relative priority
of this data packet with respect to
other data packets.

Precedence denotes the impor-
tance or priority of the datagam
with respect to other datagrams.

Assumes that routing information
will assist in ordering packets for
forwarding.

QOS maintenance provides in-
formation intended to influence
routing decisions.

Type of service provides in-
formation intended to influence
routing decisions.

(see RFC 1349)

Examples: maintain sequence to
the extent possible (follow the
leader); take the route with the
lowest error rate; take the path
with the smallest transit delay;
take the path with the least cost.

Timestamp provides a list of
timestamps (and optionally, the
addresses) from the gateways
traversed by the datagram.

Padding is used to lengthen the
header to a convenient
length.

Padding is the last field of the
datagram and is used to ensure
that the IP header ends on a 32-
bit boundary.

Padding is used to align user data
to machine word sizes.

A code point for a security option
is reserved but is as yet undefined.

Security provides a means of con-
veying security level, compart-
mentation, handling restriction
codes, and user group parameters.
(See RFC 1108)

In many implementations, and in
the absence of OSI standards for
security, RFC 1108 is encoded in
the CLNP security option.

THE NETWORK LAYER 393

TCP/IP and OSI
Control
Messages

OSI Protocol
Combinations

ICMP defines messages other than error reports. The source quench mes-
sage serves as a coarse congestion-notification mechanism, providing
routers with the means to tell hosts to reduce the rate at which they are
sending IP packets. The same function is accomplished in OSI using a
CLNP error report with the reason for discard field set to the value that
means “congestion experienced.” The ICMP echo request and echo reply
messages are useful in determining whether a remote IP entity is “alive
and well.” A host issues an echo request and determines from the receipt
of a corresponding echo reply message that the remote IP entity is able to
process IP (and ICMP) packets. This is accomplished in a nearly identical
manner in OSI using CLNP echo request and echo reply packets, which
have been adopted as part of the second edition of ISO/IEC 8473. The
ICMP redirect message is used by router A when it receives an IP data-
gram from a host “foo” and determines from its local routing informa-
tion that router B offers a better (shorter) path to the destination IP
address “bar.” Router A will forward the original datagram toward its
destination and also return a redirect message advising foo to forward
future packets destined for bar to router B. (Redirection is accomplished
in OSI through the use of the end-system to intermediate-system routing
protocol, which is described in Chapter 14.) ICMP also offers a timestamp
request and reply function, which is used to determine round-trip-times
across an internet, and an information request and reply function, which
may be used by a host to determine its IP network number. (Currently,
OSI has no corresponding capabilities defined for CLNP.)

IONL was Pandora’s box . . .
ISO/IEC 8880 explains what to do once you've opened it!

The Internal Organization of the Network Layer describes the relation-
ships among the real-world components that might be used (individual-
ly or collectively) to provide the OSI network service. In a rash moment
of pragmatism, it was decided that far too many combinations of real-

394

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

TCP/IP Protocol
Combinations

Network-layer
Protocol
Identification

world protocols existed and a weeding-out process was needed. ISO/IEC
8880: 1990, Protocol Combinations to Provide and Support the OSI network
Service, Part 1— General Principles, describes the weeding-out process;
Parts 2 and 3 describe the combinations that survived the initial cut. To
avoid the embarrassing accusation of lacking vision, Part 1 also includes
“Criteria for Expansion of ISO 8880.”17

Parts 2 and 3 describe protocol combinations (e.g., CLNP over ISO/
IEC 8802 LANS, or X.25 packet level protocol over the data link service
provided by ISO/IEC 7776), environments (LAN, PSDN, CSDN, point-to-
point subnetwork), and the obligatory conformance for a given environ-
ment. Part 2 is devoted to provision of the connection-oriented network
service, Part 3 to the connectionless network service. (In keeping with
accepted practice in OS], the issue of interworking between the two types
of network service is finessed.)

Inclusion in the protocol combinations and environments was
something of a popularity contest. The combinations considered broadly
applicable are included. Since there is a clause covering expansion, it is
inevitable that additional combinations will be considered and incorpo-
rated in the future. The aspect of ISO/IEC 8880 that is both amusing and
disappointing is that Parts 2 and 3 are merely pointer documents: they
identify the ISO/IEC standards included in a given protocol combina-
tion/environment but provide little in the way of implementation guide-
lines beyond that which is contained in the cited documents. The illustra-
tions of the protocols and combinations to support the OSI network ser-
vice in Parts 2 and 3 are the essence of the standard (Figures 13.10 and
13.11).

The TCP/IP equivalent of OSI’s protocol combinations is a series of
much more practical documents that describe the mundane but essential
details of IP encapsulation and other idiosyncratic behavior associated
with IP protocol operation over the many network interfaces (IEEE 802
LANSs, Ethernet, SMDS, FDDI, amateur packet-radio link-layer protocol,
point-to-point links—see RFC 1042, RFC 894, RFC 1209, RFC 1188, RFC
1226, and RFC 1171, respectively).

Given that there are potentially lots of protocols in the OSI network
layer, and they are sometimes stacked together, how do you distinguish

17. Rather than expanding ISO/IEC 8880, the standards developers decided in early
1993 to replace all 3 parts with an omnibus technical report entitled “Provision of the OSI
Network Service” (ISO/IEC 13532: 1993).

THE NETWORK LAYER

395

| SO 8880-2
Provi sion & Supp
of CO Mode NS

1 SO 8802 LAN PSDN CSDN Poi nt - poi nt
Subnet wor k
v Y

Sect i onTwo: Sect i onThr ee: Sect i onFour : Sect i orFi ve:

Qper at i onof Qper at i onof Qper at i onof Qper at i onof
1508202 inthe 1 SO8208inthe 1508202 inthe 1S08202inthe
DTE/ DTE node DTE/ DCE node DTE/ DTE node DTE/ DTE node
over | SO 8802-p over 1S07776 over | SO7776 i1 over 1SO7776

conj uncti onwi t h
X.21or X 21bi g

Source: ISO/IEC 8880 (1990), “Protocol Combinations to Provide and Support the OSI
Network Service, Part 2—Provision and Support of Connection-mode Network Service.”

FIGURE 13.10 Provision and Support of Connection-oriented Network Service

| SO 8880-3
Provi sion & Suppt
of CL-Mbde NS

1 SO 8802 LAN | PSDN | | CSDN | Poi nt - poi nt
Subnet wor k
Y \ ¥
Sect i onTwo: Sect i onThr ee: Sect i onFour : Sect i orFi ve:
Qper at i onof Qper at i onof Qper at i onof Qper at i onof
1 SO 8473 over 1 SO 8473 over 1 SO 8473 over 1 SO 8473 over
1 SO 8802-2 | SO 8202 1SO7776 in 1 SO 7776
conj uncti onwi t
X. 21 or X 21bid

Source: ISO/IEC 8880 (1990), “Protocol Combinations to Provide and Support the OSI
Network Service, Part 3—Provision and Support of Connectionless Network Service.”

FIGURE 13.11 Provision and Support of Connectionless Network Service

396

OPEN SYSTEMS NETWORKING: TCP/IP AND OSI

one from the other? By convention (ISO/IEC 9577: 1990), all OSI net-
work-layer protocols must reserve the first octet as the initial protocol
identifier (IPI); the first octet of CLNP, for example, is binary 1000 0001.
Thus, the first octet of the data link service data unit identifies which of
the OSI network-layer protocols is conveyed (Figure 13.12).

It should come as no surprise that the X.25 packet level protocol
treatment of this octet is an exception. The first octet of X.25 packets is a
combination of the general format indicator (GFI) and the upper 4 bits of
logical channel identification—so X.25 hogs dozens of network-layer pro-
tocol identifier bit assignments (Figure 13.13).

In OSI, X.25 is a beast of many burdens; it can carry CLNP, OSI
routing protocols for CLNP, triple-X protocols, or OSI transport proto-
cols. This multiple role for X.25 necessitates the us